- extremal subset
- мат. экстремальное подмножество
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Extremal combinatorics — is a field of combinatorics, which is itself a part of mathematics. Extremal combinatorics studies how large or how small a collection of finite objects (numbers, graphs, vectors, sets, etc.) can be, if it has to satisfy certain restrictions.For… … Wikipedia
Maximally stable extremal regions — Feature detection Output of a typical corner detection algorithm … Wikipedia
combinatorics — /keuhm buy neuh tawr iks, tor , kom beuh /, n. (used with singular v.) See combinatorial analysis. * * * Branch of mathematics concerned with the selection, arrangement, and combination of objects chosen from a finite set. The number of possible… … Universalium
Surreal number — In mathematics, the surreal number system is an arithmetic continuum containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals share… … Wikipedia
Hölder's inequality — In mathematical analysis Hölder s inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces. Let (S, Σ, μ) be a measure space and let 1 ≤ p, q ≤ ∞ with… … Wikipedia
Turán graph — The Turán graph T(13,4) Named after Pál Turán v · … Wikipedia
Twelvefold way — In combinatorics, the twelvefold way is a name given to a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and… … Wikipedia
Calculus of variations — is a field of mathematics that deals with extremizing functionals, as opposed to ordinary calculus which deals with functions. A functional is usually a mapping from a set of functions to the real numbers. Functionals are often formed as definite … Wikipedia
Clique (graph theory) — A graph with 23 1 vertex cliques (its vertices), 42 2 vertex cliques (its edges), 19 3 vertex cliques (the light blue triangles), and 2 4 vertex cliques (dark blue). Six of the edges and 11 of the triangles form maximal cliques. The two dark blue … Wikipedia
Points et parties remarquables de la frontiere d'un convexe — Points et parties remarquables de la frontière d un convexe Face à un polyèdre convexe de l espace de dimension 3, qu il soit familier comme un cube ou plus exotique, on sait spontanément reconnaître des points où le convexe est… … Wikipédia en Français
Points et parties remarquables de la frontière d'un convexe — Face à un polyèdre convexe de l espace de dimension 3, qu il soit familier comme un cube ou plus compliqué, on sait spontanément reconnaître les points où le convexe est « pointu », ses sommets, puis subdiviser les points restants entre … Wikipédia en Français