ergodic matrix
Смотреть что такое "ergodic matrix" в других словарях:
Ergodic theory — is a branch of mathematics that studies dynamical systems with an invariant measure and related problems. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical … Wikipedia
Stochastic matrix — For a matrix whose elements are stochastic, see Random matrix In mathematics, a stochastic matrix (also termed probability matrix, transition matrix, substitution matrix, or Markov matrix) is a matrix used to describe the transitions of a Markov… … Wikipedia
John von Neumann — Von Neumann redirects here. For other uses, see Von Neumann (disambiguation). The native form of this personal name is Neumann János. This article uses the Western name order. John von Neumann … Wikipedia
Markov chain — A simple two state Markov chain. A Markov chain, named for Andrey Markov, is a mathematical system that undergoes transitions from one state to another, between a finite or countable number of possible states. It is a random process characterized … Wikipedia
Oseledets theorem — In mathematics, the multiplicative ergodic theorem, or Oseledets theorem provides the theoretical background for computation of Lyapunov exponents of a nonlinear dynamical system. It was proved by Valery Oseledets (also spelled Oseledec ) in 1965 … Wikipedia
List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… … Wikipedia
Dynamical system — This article is about the general aspects of dynamical systems. For technical details, see Dynamical system (definition). For the study, see Dynamical systems theory. Dynamical redirects here. For other uses, see Dynamics (disambiguation). The… … Wikipedia
Subshift of finite type — In mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
MIMO — This article is about MIMO in wireless communication. For other uses, see MIMO (disambiguation). Understanding of SISO, SIMO, MISO and MIMO (note that the terms input and output refer to the radio channel carrying the signal, not to the devices… … Wikipedia
Von Neumann entropy — In quantum statistical mechanics, von Neumann entropy refers to the extension of classical entropy concepts to the field of quantum mechanics.John von Neumann rigorously established the correct mathematical framework for quantum mechanics with… … Wikipedia