equivalent morphisms

equivalent morphisms
мат. эквивалентные морфизмы

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Нужно сделать НИР?

Смотреть что такое "equivalent morphisms" в других словарях:

  • Fibred category — Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images (or pull backs) of objects such as vector bundles …   Wikipedia

  • Topos — For topoi in literary theory, see Literary topos. For topoi in rhetorical invention, see Inventio. In mathematics, a topos (plural topoi or toposes ) is a type of category that behaves like the category of sheaves of sets on a topological space.… …   Wikipedia

  • Groupoid — dablink|This article is about groupoids in category theory. For the algebraic structure with a single binary operation see magma (algebra). In mathematics, especially in category theory and homotopy theory, a groupoid is a simultaneous… …   Wikipedia

  • Motive (algebraic geometry) — For other uses, see Motive (disambiguation). In algebraic geometry, a motive (or sometimes motif, following French usage) denotes some essential part of an algebraic variety . To date, pure motives have been defined, while conjectural mixed… …   Wikipedia

  • Glossary of scheme theory — This is a glossary of scheme theory. For an introduction to the theory of schemes in algebraic geometry, see affine scheme, projective space, sheaf and scheme. The concern here is to list the fundamental technical definitions and properties of… …   Wikipedia

  • Adjoint functors — Adjunction redirects here. For the construction in field theory, see Adjunction (field theory). For the construction in topology, see Adjunction space. In mathematics, adjoint functors are pairs of functors which stand in a particular… …   Wikipedia

  • Grothendieck topology — In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C which makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a …   Wikipedia

  • Stone duality — In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they… …   Wikipedia

  • Category (mathematics) — In mathematics, a category is an algebraic structure that comprises objects that are linked by arrows . A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A …   Wikipedia

  • Equivalence of categories — In category theory, an abstract branch of mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are essentially the same . There are numerous examples of categorical equivalences… …   Wikipedia

  • Morphism — In mathematics, a morphism is an abstraction derived from structure preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»