dual involution
Смотреть что такое "dual involution" в других словарях:
Hodge dual — In mathematics, the Hodge star operator or Hodge dual is a significant linear map introduced in general by W. V. D. Hodge. It is defined on the exterior algebra of a finite dimensional oriented inner product space. Contents 1 Dimensions and… … Wikipedia
Reductive dual pair — In the mathematical field of representation theory, a reductive dual pair is a pair of subgroups (G,G ′) of the isometry group Sp(W) of a symplectic vector space W, such that G is the centralizer of G ′ in Sp(W) and vice versa, and these groups… … Wikipedia
involutif — involutif, ive [ ɛ̃vɔlytif, iv ] adj. • 1798; du lat. involutus; cf. involuté 1 ♦ Bot. Involuté. 2 ♦ (1931) Math. Qui se rapporte à une involution. 3 ♦ Méd. Dépression, lésion involutive. ⇒ involution (3o). ● involutif, involutive adjectif ( … Encyclopédie Universelle
Duality (mathematics) — In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one to one fashion, often (but not always) by means of an involution operation: if the dual… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
Triple system — In algebra, a triple system is a vector space V over a field F together with a F trilinear map: (cdot,cdot,cdot) colon V imes V imes V o V.The most important examples are Lie triple systems and Jordan triple systems. They were introduced by… … Wikipedia
Laws of classical logic — The laws of classical logic are a small collection of fundamental sentences of propositional logic and Boolean algebra, from which may be derived all true sentences in both of these elementary formal systems.The syntax of the laws of classical… … Wikipedia
NORMÉES (ALGÈBRES) — Au point de rencontre de deux types de structures, structures algébriques et structures topologiques, les algèbres normées jouent un rôle important dans de nombreux domaines de l’analyse mathématique. Développée à partir de 1940 environ,… … Encyclopédie Universelle
Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… … Wikipedia
Forme hermitienne — Cet article concerne le cas général abstrait. Pour un cas plus élémentaire, voir Forme sesquilinéaire complexe. En mathématiques, une forme hermitienne est une fonction de deux variable sur un espace vectoriel sur un corps relativement à une… … Wikipédia en Français
Spin representation — In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature (i.e., including indefinite orthogonal groups). More precisely, they are… … Wikipedia