determinant theorem

determinant theorem
мат. теорема о детерминантах

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "determinant theorem" в других словарях:

  • Sylvester's determinant theorem — In matrix theory, Sylvester s determinant theorem is a theorem useful for evaluating certain types of determinants. It is named after James Joseph Sylvester.The theorem states that if A , B are matrices of size p times; n and n times; p… …   Wikipedia

  • Determinant — This article is about determinants in mathematics. For determinants in epidemiology, see Risk factor. In linear algebra, the determinant is a value associated with a square matrix. It can be computed from the entries of the matrix by a specific… …   Wikipedia

  • Cayley–Hamilton theorem — In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Hamilton) states that every square matrix over the real or complex field satisfies its own characteristic equation.More precisely; if A is… …   Wikipedia

  • Kirchhoff's theorem — In the mathematical field of graph theory Kirchhoff s theorem or Kirchhoff s matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph. It is a generalization of Cayley s formula which provides… …   Wikipedia

  • Inverse function theorem — In mathematics, specifically differential calculus, the inverse function theorem gives sufficient conditions for a function to be invertible in a neighborhood of a point in its domain. The theorem also gives a formula for the derivative of the… …   Wikipedia

  • Dirichlet's unit theorem — In mathematics, Dirichlet s unit theorem is a basic result in algebraic number theory due to Gustav Lejeune Dirichlet.[1] It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a… …   Wikipedia

  • Minkowski's theorem — In mathematics, Minkowski s theorem is the statement that any convex set in Rn which is symmetric with respect to the origin and with volume greater than 2n d(L) contains a non zero lattice point. The theorem was proved by Hermann Minkowski in… …   Wikipedia

  • Crystallographic restriction theorem — The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2 fold, 3 fold, 4 fold, and 6 fold. However, quasicrystals can occur with other symmetries …   Wikipedia

  • Mahler's compactness theorem — In mathematics, Mahler s compactness theorem, proved by Kurt Mahler (1946), is a foundational result on lattices in Euclidean space, characterising sets of lattices that are bounded in a certain definite sense. Looked at another way, it… …   Wikipedia

  • Central limit theorem — This figure demonstrates the central limit theorem. The sample means are generated using a random number generator, which draws numbers between 1 and 100 from a uniform probability distribution. It illustrates that increasing sample sizes result… …   Wikipedia

  • Implicit function theorem — In the branch of mathematics called multivariable calculus, the implicit function theorem is a tool which allows relations to be converted to functions. It does this by representing the relation as the graph of a function. There may not be a… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»