- dense subspace
- мат. плотное подпространство
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Dense set — In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if any point x in X belongs to A or is a limit point of A.[1] Informally, for every point in X, the point is either in A or arbitrarily close … Wikipedia
Nowhere dense set — A subset A of a topological space X is nowhere dense in X if and only if the interior of the closure of A is empty. The order of operations is important. For example, the set of rational numbers, as a subset of R has the property that the closure … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Complete metric space — Cauchy completion redirects here. For the use in category theory, see Karoubi envelope. In mathematical analysis, a metric space M is called complete (or Cauchy) if every Cauchy sequence of points in M has a limit that is also in M or,… … Wikipedia
Locally compact space — In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space.Formal definitionLet X be a topological space. The… … Wikipedia
Inner product space — In mathematics, an inner product space is a vector space with the additional structure of inner product. This additional structure associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors.… … Wikipedia
Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… … Wikipedia
Rigged Hilbert space — In mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square integrable aspects of functional analysis. Such spaces were introduced to study… … Wikipedia
Densely-defined operator — In mathematics mdash; specifically, in operator theory mdash; a densely defined operator is a type of partially defined function; in a topological sense, it is a linear operator that is defined almost everywhere . Densely defined operators often… … Wikipedia
Spectral theory of ordinary differential equations — In mathematics, the spectral theory of ordinary differential equations is concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl… … Wikipedia
Densely defined operator — In mathematics specifically, in operator theory a densely defined operator is a type of partially defined function; in a topological sense, it is a linear operator that is defined almost everywhere . Densely defined operators often arise in… … Wikipedia