- definability theorem
- мат. теорема определимости
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Post's theorem — In computability theory Post s theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees. Background The statement of Post s theorem requires several concepts relating to definability and… … Wikipedia
Beth definability — In mathematical logic, Beth definability states that for any two models A , B of a first order theory T in the language L ⊇ L, if A | L = B | L (where A | L is the reduct of A to L ) implies that for all tuples a of A , A ⊨ φ [ a ] if and only if … Wikipedia
Robinson's joint consistency theorem — is an important theorem of mathematical logic. It is related to Craig interpolation and Beth definability.The classical formulation of Robinson s joint consistency theorem is as follows:Let T 1 and T 2 be first order theories. If T 1 and T 2 are… … Wikipedia
Institutional model theory — generalizes a large portion of first order model theory to an arbitrary logical system. The notion of logical system here is formalized as an institution. Institutions constitute a model oriented meta theory on logical systems similar to how the… … Wikipedia
List of philosophy topics (A-C) — 110th century philosophy 11th century philosophy 12th century philosophy 13th century philosophy 14th century philosophy 15th century philosophy 16th century philosophy 17th century philosophy 18th century philosophy 19th century philosophy220th… … Wikipedia
History of the Church-Turing thesis — This article is an extension of the history of the Church Turing thesis.The debate and discovery of the meaning of computation and recursion has been long and contentious. This article provides detail of that debate and discovery from Peano s… … Wikipedia
History of the Church–Turing thesis — This article is an extension of the history of the Church–Turing thesis. The debate and discovery of the meaning of computation and recursion has been long and contentious. This article provides detail of that debate and discovery from Peano s… … Wikipedia
Computability theory — For the concept of computability, see Computability. Computability theory, also called recursion theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown … Wikipedia
Recursion theory — Recursion theory, also called computability theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown to include the study of generalized computability… … Wikipedia
Structure (mathematical logic) — In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations which are defined on it. Universal algebra studies structures that generalize the algebraic structures such as… … Wikipedia
Forcing (mathematics) — For the use of forcing in recursion theory, see Forcing (recursion theory). In the mathematical discipline of set theory, forcing is a technique invented by Paul Cohen for proving consistency and independence results. It was first used, in 1963,… … Wikipedia