- covering fibration
- мат. покрывающее расслоение
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Homotopy lifting property — In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property (also known as the right lifting property or the covering homotopy axiom) is a technical condition on a continuous function from a… … Wikipedia
Monodromy — In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology and algebraic and differential geometry behave as they run round a singularity. As the name implies, the fundamental meaning of monodromy comes… … Wikipedia
Fiber bundle — In mathematics, in particular in topology, a fiber bundle (or fibre bundle) is a space which looks locally like a product space. It may have a different global topological structure in that the space as a whole may not be homeomorphic to a… … Wikipedia
Fundamental group — In mathematics, the fundamental group is one of the basic concepts of algebraic topology. Associated with every point of a topological space there is a fundamental group that conveys information about the 1 dimensional structure of the portion of … Wikipedia
Real projective space — In mathematics, real projective space, or RP n is the projective space of lines in R n +1. It is a compact, smooth manifold of dimension n , and a special case of a Grassmannian.ConstructionAs with all projective spaces, RP n is formed by taking… … Wikipedia
Lift (mathematics) — f from an object X to an object Y , and a morphism g from an object Z to Y , a lift (or lifting) of f to Z is a morphism h from X to Z such that gh = f . A basic example in topology is lifting a path in one space to a path in a covering space.… … Wikipedia
Symmetric space — In differential geometry, representation theory and harmonic analysis, a symmetric space is a smooth manifold whose group of symmetries contains an inversion symmetry about every point. There are two ways to make this precise. In Riemannian… … Wikipedia
Eilenberg-MacLane space — In mathematics, an Eilenberg MacLane space is a special kind of topological space that can be regarded as a building block for homotopy theory. These spaces are important in many contexts in algebraic topology, including stage by stage… … Wikipedia
Reduction of the structure group — In mathematics, in particular the theory of principal bundles, one can ask if a G bundle comes from a subgroup H < G. This is called reduction of the structure group (to H), and makes sense for any map H o G, which need not be an inclusion… … Wikipedia
Electrorheological fluid — Electrorheological (ER) fluids are suspensions of extremely fine non conducting particles (up to 50 micrometres diameter) in an electrically insulating fluid. The apparent viscosity of these fluids changes reversibly by an order of up to 100,000… … Wikipedia
Aspherical space — In topology, an aspherical space is a topological space with all higher homotopy groups equal to {0}. If one works with CW complexes, one can reformulate this condition: an aspherical CW complex is a CW complex whose universal cover is… … Wikipedia