covariant degree
Смотреть что такое "covariant degree" в других словарях:
Relativity priority dispute — Albert Einstein presented the theories of Special Relativity and General Relativity in groundbreaking publications that either contained no formal references to previous literature, or referred only to a small number of his predecessors for… … Wikipedia
Tensor — For other uses, see Tensor (disambiguation). Note that in common usage, the term tensor is also used to refer to a tensor field. Stress, a second order tensor. The tensor s components, in a three dimensional Cartesian coordinate system, form the… … Wikipedia
Curvilinear coordinates — Curvilinear, affine, and Cartesian coordinates in two dimensional space Curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian… … Wikipedia
Connection (vector bundle) — This article is about connections on vector bundles. See connection (mathematics) for other types of connections in mathematics. In mathematics, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; … Wikipedia
Superspace — has had two meanings in physics. The word was first used by John Wheeler to describe the configuration space of general relativity; for example, this usage may be seen in his famous 1973 textbook Gravitation .The second meaning refers to the… … Wikipedia
Exact functor — In homological algebra, an exact functor is a functor, from some category to another, which preserves exact sequences. Exact functors are very convenient in algebraic calculations, roughly speaking because they can be applied to presentations of… … Wikipedia
Special relativity — (SR) (also known as the special theory of relativity or STR) is the physical theory of measurement in inertial frames of reference proposed in 1905 by Albert Einstein (after considerable contributions of Hendrik Lorentz and Henri Poincaré) in the … Wikipedia
Change of basis — In linear algebra, change of basis refers to the conversion of vectors and linear transformations between matrix representations which have different bases. Contents 1 Expression of a basis 2 Change of basis for vectors 2.1 Tensor proof … Wikipedia
Derivative (generalizations) — Derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Derivatives in analysis In real, complex, and functional… … Wikipedia
Delta-functor — In homological algebra, a δ functor between two abelian categories A and B is a collection of functors from A to B together with a collection of morphisms that satisfy properties generalising those of derived functors. A universal δ functor is a… … Wikipedia
Generalizations of the derivative — The derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Contents 1 Derivatives in analysis 1.1 Multivariable… … Wikipedia