- covariant bundle
- мат. ковариантное расслоение
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Covariant derivative — In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a… … Wikipedia
Connection (vector bundle) — This article is about connections on vector bundles. See connection (mathematics) for other types of connections in mathematics. In mathematics, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; … Wikipedia
Connection (principal bundle) — This article is about connections on principal bundles. See connection (mathematics) for other types of connections in mathematics. In mathematics, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way … Wikipedia
Double tangent bundle — In mathematics, particularly differential topology, the double tangent bundle or the second tangent bundle refers to the tangent bundle (TTM,πTTM,TM) of the total space TM of the tangent bundle (TM,πTM,M) of a smooth manifold M [1]. The second… … Wikipedia
Exterior covariant derivative — In mathematics, the exterior covariant derivative, sometimes also covariant exterior derivative, is a very useful notion for calculus on manifolds, which makes it possible to simplify formulas which use a principal connection. Let P → M be a… … Wikipedia
Pullback bundle — In mathematics, a pullback bundle or induced bundle is a useful construction in the theory of fiber bundles. Given a fiber bundle pi; : E rarr; B and a continuous map f : B prime; rarr; B one can define a pullback of E by f as a bundle f * E over … Wikipedia
Jet bundle — In differential geometry, the jet bundle is a certain construction which makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant… … Wikipedia
Exterior bundle — In mathematics, the exterior bundle of a manifold M is the subbundle of the tensor bundle consisting of all antisymmetric covariant tensors. It has special significance, because one can define a connection independent derivative on it, namely the … Wikipedia
Affine connection — An affine connection on the sphere rolls the affine tangent plane from one point to another. As it does so, the point of contact traces out a curve in the plane: the development. In the branch of mathematics called differential geometry, an… … Wikipedia
Ehresmann connection — In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection which is defined on arbitrary fibre bundles. In particular, it may… … Wikipedia
Cartan connection — In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the … Wikipedia