- cotangent space
- мат. кокасательное пространство
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Cotangent space — In differential geometry, one can attach to every point x of a smooth (or differentiable) manifold a vector space called the cotangent space at x. Typically, the cotangent space is defined as the dual space of the tangent space at x, although… … Wikipedia
Cotangent bundle — In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle.… … Wikipedia
Cotangent complex — In mathematics the cotangent complex is a roughly a universal linearization of a morphism of geometric or algebraic objects. Cotangent complexes were originally defined in special cases by a number of authors. Luc Illusie, Daniel Quillen, and M.… … Wikipedia
Tangent space — In mathematics, the tangent space of a manifold is a concept which facilitates the generalization of vectors from affine spaces to general manifolds, since in the latter case one cannot simply subtract two points to obtain a vector pointing from… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Ringed space — In mathematics, a ringed space is, intuitively speaking, a space together with a collection of commutative rings, the elements of which are functions on each open set of the space. Ringed spaces appear throughout analysis and are also used to… … Wikipedia
Zariski tangent space — In algebraic geometry, the Zariski tangent space is a construction that defines a tangent space, at a point P on an algebraic variety V (and more generally). It does not use differential calculus, being based directly on abstract algebra, and in… … Wikipedia
Phase space — In mathematics and physics, a phase space, introduced by Willard Gibbs in 1901, is a space in which all possible states of a system are represented, with each possible state of the system corresponding to one unique point in the phase space. For… … Wikipedia
Configuration space — Not to be confused with PCI Configuration Space. C space redirects here. For the art gallery, see C Space, Beijing. Contents 1 Configuration space in physics 2 Configuration spaces in mathematics 3 See also … Wikipedia
Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… … Wikipedia
Atiyah–Singer index theorem — In the mathematics of manifolds and differential operators, the Atiyah–Singer index theorem states that for an elliptic differential operator on a compact manifold, the analytical index (closely related to the dimension of the space of solutions) … Wikipedia