прямое пространство
Смотреть что такое "прямое пространство" в других словарях:
Прямое произведение — Прямое или декартово произведение множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих… … Википедия
Прямое произведение графов — Прямое или декартово произведение множеств множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих … Википедия
Прямое произведение групп — Прямое или декартово произведение множеств множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих … Википедия
Прямое произведение множеств — Прямое или декартово произведение множеств множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих … Википедия
ПРОСТРАНСТВО — культуры важнейший аспект модели мира, характеристика протяженности, структурности, сосуществования, взаимодействия, координации элементов отд. культуры и соответствующих отношений между культурами, а также смысловой… … Энциклопедия культурологии
Пространство в физике — У этого термина существуют и другие значения, см. Пространство. В физике термин пространство понимают, в основном, в двух смыслах: 1) так называемое обычное пространство, называемое также физическим пространством[1] трехмерное пространство… … Википедия
Пространство-время — Общая теория относительности … Википедия
ЛЕБЕГА ПРОСТРАНСТВО — пространство с мерой (где М нек рое множество, нек рая алгебра его подмножеств, именуемых измеримыми, а нек рая мера, определенная на измеримых множествах), изоморфное стандартному образцу , состоящему из нек рого отрезка и не более чем счетного… … Математическая энциклопедия
ПРИВОДИМОЕ РИМАНОВО ПРОСТРАНСТВО — риманово пространство М, у к рого линейная (или, иначе, однородная) голономии группа приводима, т. е. имеет нетривиальные инвариантные подпространства. Риманово пространство с неприводимой группой голономии наз. неприводимым. Полное односвязное П … Математическая энциклопедия
СИМПЛЕКТИЧЕСКОЕ ПРОСТРАНСТВО ОДНОРОДНОЕ — симплектическое многообразие (М, w) вместе с транзитивной группой Ли G его автоморфизмов. Элементы алгебры Ли группы G можно рассматривать как симплектические векторные поля на М, т. е. поля X, сохраняющие симплектическую 2 форму w: где точкой… … Математическая энциклопедия
ШТЕЙНА ПРОСТРАНСТВО — голоморфно полное пространство, паракомпактноо комплексное аналитич. ространство обладающее следующими свойствами: 1) любое компактное аналитич. одмножество в Xконечно; 2) любой компакт допускает такую открытую окрестность Wв X, что множество… … Математическая энциклопедия