ДОПЛЕРА ЭФФЕКТ


ДОПЛЕРА ЭФФЕКТ
ДОПЛЕРА ЭФФЕКТ

       
изменение частоты колебаний w или длины волны l, воспринимаемой наблюдателем, при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Д. э. проще всего объяснить на след. примере. Пусть неподвижный источник испускает последовательность импульсов с расстоянием между соседними импульсами, равным l0, к-рые распространяются в однородной среде с пост. скоростью v, не испытывая никаких искажений (т. е. в линейной среде без дисперсии). Тогда неподвижный наблюдатель будет принимать последовательные импульсы через временной промежуток Т0=l0/v. Если же источник движется в сторону наблюдателя со скоростью V<-v, то соседние импульсы оказываются разделёнными меньшим промежутком времени T=l/v, где l=l0- VT0. Если вместо импульсов рассматривать соседние максимумы поля в непрерывной гармонической волне, то при Д. э. частота этой волны w=2p/Т, воспринимаемая наблюдателем, будет больше частоты w0=2p/T0, испускаемой источником:
w=w0/(1-V/v). (1)
При удалении источника от наблюдателя принимаемая частота уменьшается, что описывается той же ф-лой (1), но с изменённым в ней знаком скорости V.
Для движений с произвольными скоростями (в т. ч. со скоростями, равными или близкими к скорости света) в однородных средах необходимо учитывать угол q между скоростью V и волновым вектором k излучаемой волны, а также принимать во внимание эффект релятив. замедления времени (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ), описываемый фактором g=(1-b2)-1/2, где b=V/c. В этом случае
ДОПЛЕРА ЭФФЕКТ1
Здесь, как и в ф-ле (1), v — фазовая скорость волнового возмущения с частотой w, распространяющегося в среде в направлении q.
Таким образом, Д. э. имеет чисто кинематич. происхождение и возникает как для волновых, так и неволновых движений любой природы при наблюдении их в двух движущихся относительно друг друга системах отсчёта. С точки зрения теории относительности Д. э. для плоских однородных волн вида AехрiФ=Aехрi(wt-kr) есть следствие инвариантности 4-скаляра (фазы) Ф при релятив. преобразованиях координат и времени (т. е. компонентов 4-вектора (r, ct)). Другими словами, волновой вектор k и частота w ведут себя как компоненты единого 4-вектора (k, w/с), что позволяет рассматривать Д. э. (преобразование частоты) и изменение направления k (релятив. аберрации) как две стороны одного и того же явления.
Из соотношения (2) можно выяснить все осн. физ. проявления Д. э. При q=0 или p наблюдается продольный Д. э., когда источник движется прямо на наблюдателя или от него, и изменение частоты максимально. При q=p/2 имеет место поперечный Д. э., к-рый связан с чисто релятив. эффектом замедления времени и не имеет никакой волновой специфики (в частности, не зависит от фазовой скорости волн v).
В средах с дисперсией волн может возникнуть сложный Д. <э. При этом фазовая скорость зависит от частоты v=v(w) и соотношение (2) становится ур-нием относительно w, к-рое может допускать неск. действит. решений для заданных w0 и q, т. е. под одним и тем же углом от монохроматич. источника в точку наблюдения могут приходить неск. волн с разл. частотами. Появление сложного Д. э. означает, что вследствие релятив. аберраций две плоские волны, испущенные движущимся источником под разными углами, воспринимаются наблюдателем под одним и тем же углом.
Дополнит. особенности Д. э. возникают при движении источника со скоростью V>v, когда на поверхности конуса углов, удовлетворяющих условию cos q0=v/V, знаменатель в ф-ле (2) обращается в нуль, а доплеровская частота w неограниченно возрастает — т. н. а н о м а л ь н ы й Д. <э. Внутри указанного конуса (соответствующего конусу Маха в аэродинамике или черенковскому конусу в электродинамике; (см. ЧЕРЕНКОВА—ВАВИЛОВА ИЗЛУЧЕНИЕ), где имеет место аномальный Д. э., излучение доплеровских частот сопровождается не затуханием, как при норм. Д. э., а, наоборот, раскачкой колебаний излучателя (осциллятора) за счёт энергии его поступат. движения. С квант. точки зрения это соответствует излучению фотона с одноврем. переходом осциллятора на более высокий энергетич. уровень. При аномальном Д. э. частота растёт с увеличением угла q, тогда как при норм. Д. э. (в т. ч. в случае V>v вне конуса cosq0=v/V) под большими углами q излучаются меньшие частоты.
Асимметрия Д. э. относительно движения источника и наблюдателя следует из того, что фазовая скорость г, входящая в ур-ние (2), различна в движущейся и неподвижной среде: распространение звука по ветру идёт скорее, чем против ветра, свет частично увлекается движущейся диэлектрич. средой и т. п. Другими словами, величина Д. э. определяется величиной и направлением скорости как источника, так и приёмника относительно среды, в к-рой распространяются волны. Исключение составляет случай эл.-магн. волн в вакууме, когда v=c во всех системах отсчёта, и Д. а. полностью определяется относит. скоростью источника и приёмника.
Разновидностью Д. э. явл. т. н. двойной Д. э.— смещение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать сначала как приёмник, а затем как переизлучатель волн. Если w0 и vО — частота и скорость падающей волны, то частоты wi вторичных (отражённых и прошедших) волн оказываются равными:
ДОПЛЕРА ЭФФЕКТ2
где q0 и qi — углы между волновым вектором соответствующей волны и нормальной составляющей скорости движения отражающей поверхности V. Ф-ла (3) справедлива и в том случае, когда отражение происходит от движущейся неоднородности, создаваемой за счёт изменения состояния макроскопически неподвижной среды (напр., волны ионизации в газе). Из неё следует, в частности, что при отражении от движущейся навстречу границы частота повышается, причём эффект тем больше, чем ближе скорость границы и скорость распространения отражённой волны.
В случае нестационарных сред (когда параметры среды меняются во времени) изменение частоты может происходить даже для неподвижного излучателя и приёмника — т. н. параметрический Д. э.
Д. э. назван в честь австр. физика К. Доплера (Ch. Doppler), к-рый впервые теоретически обосновал этот эффект в акустике и оптике (1842). Первое эксперим. подтверждение Д. э. в акустике относится к 1845. Франц. физик А. Физо ввёл (1848) понятие доплеровского смещения спектральных линий, к-рое вскоре было обнаружено (1867) в спектрах нек-рых звёзд и туманностей. Поперечный Д. э. был обнаружен амер. физиками Г. Айвсом и Д. Стилуэллом (1938). Обобщение Д. э. на случай нестационарных сред принадлежит В. А. Михельсону (1899), на возможность сложного Д. э. в средах с дисперсией и аномального Д. э. при V>v впервые указали В. Л. Гинзбург и И. М. Франк (1942).
Д. э. позволяет измерять скорость движения источников излучения или рассеивающих волны объектов и находит широкое практич. применение. Так, в астрофизике Д. э. используется для определения скорости движения звёзд, а также скорости вращения небесных тел. Измерения доплеровского смещения линий в спектрах излучения удалённых галактик привели к выводу о расширяющейся Вселенной (см. КРАСНОЕ СМЕЩЕНИЕ). В спектроскопии доплеровское уширение линий излучения атомов и ионов даёт способ измерения их темп-ры. В радио- и гидролокации Д. э. используется для измерения скорости движущихся целей, а также при синтезе апертуры (см. АНТЕННА).

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

ДОПЛЕРА ЭФФЕКТ

- изменение частоты колебаний w или длины волны l, воспринимаемой наблюдателем при движении источника колебаний и наблюдателя друг относительно друга. Возникновение Д. э. проще всего объяснить на след. примере. Пусть неподвижный источник испускает последовательность импульсов с расстоянием между соседними импульсами (пространств. периодом) l0, к-рые распространяются в однородной среде с пост. скоростью v, не испытывая никаких искажений (т. е. в линейной среде без дисперсии). Тогда неподвижный наблюдатель будет принимать последовательные импульсы через временной промежуток T0=l0/v. Если же источник движется в сторону наблюдателя со скоростью V, малой по сравнению со скоростью света в вакууме с (V<<c), то соседние импульсы оказываются разделёнными меньшим промежутком времени T=l/v, гдеl=l0-VT0. Если вместо импульсов рассматривать соседние максимумы поля в непрерывной гармонич. волне, то при Д. э. частота этой волны w = 2p/T0, воспринимаемая наблюдателем, будет больше частоты w0=2p/T0, испускаемой источником:
005_024-40.jpg
При удалении источника от наблюдателя принимаемая частота уменьшается, что описывается той же ф-лой (1), но с изменённым в ней знаком скорости V. Для движений с произвольными по направлению скоростями в однородной среде Д. э. зависит от угла q между скоростью V и волновым вектором k волны, принимаемой наблюдателем. При наличии дисперсии и (или) анизотропии среды важно учитывать, что в ф-лу (1) входит не групповая, а фазовая скорость волнового возмущения. Для движения со скоростями V, сравнимыми со скоростью света в вакууме, следует, кроме того, принять во внимание эффект релятивистскогозамедления времени (см. Относительности теория), описываемый фактором g=(1-b2) -1/2, где b = V/c. В результате ф-ла Д. э. примет вид:
005_024-41.jpg
Т. о., Д. э. имеет чисто кинематич. происхождение. С точки зрения теории относительности, Д. э. для плоских однородных волн вида А ехр i Ф=A exp i(wt- kr) есть следствие инвариантности 4-cкаляра (фазы) Ф при релятивистских преобразованиях координат и времени (т. е. компонент 4-вектора {r, ct}). Др. словами, волновой вектор k и частота w ведут себя как компоненты единого 4-вектора {k,w/с}, что позволяет рассматривать Д. э. (преобразование частоты) и изменение направления k (релятивистские аберрации) как две стороны одного и того же явления. <Соотношение (2) позволяет выяснить все основные физ. проявления Д. э. При q=0 или p наблюдается продольный Д. э., когда источник движется прямо на наблюдателя или от него и изменение частоты максимально. При q=p/2 имеет место поперечный Д. э., к-рый связан с чисто релятивистским эффектом замедления времени и не имеет никакой волновой специфики (в частности, не зависит от фазовой скорости волн v). В средах с дисперсией волн может возникнуть сложный Д. э. При этом фазовая скорость зависит от частоты: v=v(w), и соотношение (2) становится ур-нием относительно w, к-рое может допускать неск. действит. решений для заданных w0 и v, т. е. под одним и тем же углом от монохроматич. источника в точку наблюдения могут приходить неск. волн с разл. частотами. Появление сложного Д. э. означает, что вследствие релятивистских аберраций две плоские волны, испущенные движущимся источником под разными углами, воспринимаются наблюдателем под одним и тем же углом.

005_024-42.jpg
Диаграммы направленностей покоящегося (а) и движущегося (б)диполей. <Отмеченную выше взаимосвязь между Д. э. и релятивистскими аберрациями можно наглядно пояснить, сравнив диаграммы направленности излучения одного и того же источника, напр. элементарного электрич. диполя, в разл. условиях. На рис. апоказана диаграмма направленности покоящегося относительно наблюдателя диполя в вакууме (в плоскости диполя). При движении диполя вследствие релятивистских аберраций излучаемая энергия перераспределяется из задней в переднюю полусферу, и если дипольный момент p||V, диаграмма направленности приобретает вид, изображённый на рис. б(т. н. релятивистский "эффект прожектора", с к-рым связаны, в частности, осн. особенности синхротронного излучения).Дополнит. особенности возникают при движении источника со скоростью V>v, когда па поверхности конуса углов, удовлетворяющих условию cos q0 = v/V, знаменатель в ф-ле (2) обращается в нуль, а доплеровская частота w неограниченно возрастает,- имеет место т. н. аномальный Д. э. При аномальном Д. э. частота растёт с увеличением угла q, тогда как при нормальном Д. э. (в т. ч. в случае V>v вне конуса cos q0 = v/V )под большими углами qизлучаются меньшие частоты. Излучение внутри указанного конуса (соответствующего конусу Маха в газовой динамике или черенковскому конусу в электродинаке),где имеет место аномальный Д. э., сопровождается не затуханием, как при нормальном Д. э., а наоборот, усилением колебаний излучателя. В результате, если излучение на аномальных доплеровских частотах превалирует, возможна раскачка излучателя (осциллятора) за счёт энергии его поступат. движения. С аномальным Д. э. связаны, в частности, генерация волн на поверхности жидкости за счёт раскачки колебаний тела, буксируемого на упругой нити с достаточно большой скоростью, самовозбуждение колебаний в нек-рых электронных приборах и ряд др. движений в автоколебат. системах (см. Автоколебания). С квантовой точки зрения, аномальный Д. э. соответствует излучению фотона с одноврем. переходом осциллятора на более высокий энергетич. уровень. <Асимметрия Д. э. относительно движения источника и наблюдателя следует из того, что фазовая скорость v, входящая в ур-ние (2), вообще говоря, различна в движущейся и неподвижной среде; распространение звука по ветру идёт быстрее, чем против ветра, свет частично увлекается движущейся диэлектрич. средой и т. п. Др. словами, величина Д. э. определяется величиной и направлением скорости как источника, так и приёмника относительно среды, в к-рой распростраияются волны. Исключение составляет случай эл.-магн. волн в вакууме, когда, согласно осн. постулату теории относительности, v=c во всех системах отсчёта и Д. э. полностью определяется относит. скоростью источника и приёмника. <Разновидностью Д. э. является т. н. двойной Д. э.- смещение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать сначала как приёмник, а затем как переизлучатель волн. Если w0 и v0 - частота и скорость падающей на плоскую границу волны, то частоты wi вторичных (отражённых и прошедших) волн, распространяющихся со скоростями vi, оказываются равными:

005_024-43.jpg
где q0,i - углы между волновым вектором соответствующей волны и нормальной составляющей скорости V движения отражающей поверхности. Ф-ла (3) справедлива и в том случае, когда отражение происходит от движущейся границы изменения состояния макроскопически неподвижной среды (напр., волны ионизации в газе). Из неё следует, в частности, что при отражении от границы, движущейся навстречу волне, частота повышается, причём эффект тем больше, чем ближе скорость границы и скорость распространения отражённой волны друг к другу. <В случае нестационарных сред (когда параметры среды меняются во времени) изменение частоты может происходить даже для неподвижного излучателя и приёмника - т. н. п а р а м е т р и ч е с к и й Д. э. <Д. э. назван в честь К. Доплера (Ch. Doppler), к-рый впервые теоретически обосновал его в акустике и оптике (1842). Первое эксперим. подтверждение Д. э. в акустике относится к 1845. Уточнения, необходимые для наблюдения Д. э. в оптике, были сделаны А. Физо (A. Fiseau, 1848), к-рый рассмотрел, в частности, доплеровское смещение спектральных линий, обнаруженное позднее (1867) в спектрах нек-рых звёзд и туманностей. Поперечный Д. э. был обнаружен Г. Айвсом (Н. Ives) и Д. Стилуэллом (D. Stilwell, 1938). Обобщение Д. э. на случай нестационарных сред принадлежит В. А. Михельсону (1899), на возможность сложного Д. э. в средах с дисперсией и аномального Д. э. при V>v впервые указали В. Л. Гинзбург и И. М. Франк (1942).Д. э. позволяет измерять скорость движения источников излучения или рассеивающих волны объектови находит широкое практич. применение. Так, в астрофизике Д. э. используется для определения скорости движения звёзд, а также скорости вращения небесных тел. Измерения доплеровского смещения линий в спектрах излучения удалённых галактик привели к выводу о расширяющейся Вселенной (см. Красное смещение). В спектроскопии доплеровское уширение линий излучения атомов и ионов даёт способ измерения их темп-ры. В радио- и гидролокации Д. э. используется для измерения скорости движущихся целей, а также при синтезе апертуры (см. Антенна). Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Угаров В. А., Специальная теория относительности, 2 изд., М., 1977; Франкфурт У. И., Френк А. М., Оптика движущихся тел, М., 1972; Гинзбург В. Л., Теоретическая физика и астрофизика. Дополнительные главы, 2 изд., М., 1981; Франк И. М., Эйнштейн и оптика, "УФН", 1979, т. 129, с. 685. М. А. Миллер, Ю. М. Сорокин, Н. С. Степанов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Смотреть что такое "ДОПЛЕРА ЭФФЕКТ" в других словарях:

  • Доплера эффект — Доплера эффект: а оба наблюдателя на тротуаре слышат звук сирены стоящей на месте пожарной машины на одной и той же частоте; б наблюдатель, к которому приближается пожарная машина слышит звук более высокой частоты, а наблюдатель, от которого… …   Иллюстрированный энциклопедический словарь

  • ДОПЛЕРА ЭФФЕКТ — изменение длины волны ? (или частоты), наблюдаемое при движении источника волн относительно их приемника. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику ? уменьшается, а при удалении растет на величину ? ?о …   Большой Энциклопедический словарь

  • ДОПЛЕРА ЭФФЕКТ — изменение длины (или частоты) волн (звуковых, электромагнитных), наблюдаемое при движении источника волн относительно их приёмника. При приближении источника к приёмнику (наблюдателю) длина волны уменьшается, при удалении растёт. Изменение длины… …   Большая политехническая энциклопедия

  • Доплера эффект — Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа ниже (меньше). Эффект Доплера изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.… …   Википедия

  • Доплера эффект — изменение длины волны λ (или частоты колебаний), воспринимаемой наблюдателем, при движении источника волн и наблюдателя относительно друг друга. При приближении источника к наблюдателю λ уменьшается, а при удалении растёт на величину… …   Энциклопедический словарь

  • Доплера эффект —         изменение частоты колебаний или длины волн, воспринимаемых наблюдателем (приёмником колебаний), вследствие движения источника волн и наблюдателя относительно друг друга. Д. э. имеет место при любом волновом процессе распространения… …   Большая советская энциклопедия

  • ДОПЛЕРА ЭФФЕКТ — изменение воспринимаемой частоты колебаний, обусловленное движением источника или приемника волн либо и того и другого; впервые теоретически обоснован в 1842 К. Доплером (1803 1853). Данный эффект особенно заметен в случае звуковых волн, примером …   Энциклопедия Кольера

  • ДОПЛЕРА ЭФФЕКТ — изменение воспринимаемой частоты колебаний в зависимости от скорости движения источника колебаний и наблюдателя относительно друг друга. При сближении источника и наблюдателя частота повышается, при удалении понижается. Д. э. возникает при… …   Математическая энциклопедия

  • ДОПЛЕРА ЭФФЕКТ — [по имени австр. физика и астронома К. Доплера (Ch. Doppler; 1803 53)] изменение частоты волн (звуковых, электромагнитных), регистрируемой наблюдателем, в зависимости от направления и значения скорости относит. движения наблюдателя и источника… …   Большой энциклопедический политехнический словарь

  • ДОПЛЕРА ЭФФЕКТ — изменение длины волны Л, (или частоты колебаний), воспринимаемой наблюдателем, при движении источника волн (звуковых, световых) и наблюдателя относительно друг друга. При приближении источника к наблюдателю Л, уменьшается, а при удалении растёт… …   Естествознание. Энциклопедический словарь

Книги

Другие книги по запросу «ДОПЛЕРА ЭФФЕКТ» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.