УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ

УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ
УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ

       
(ультрафиолетовые лучи, УФ излучение), не видимое глазом эл.-магн. излучение, занимающее спектр. область между видимым и рентгеновским излучением в пределах длин волн l от 400 до 10 нм. Область У. и. условно делится на ближнюю (400200 нм) и далёкую, или вакуумную (20010 нм); последнее назв. обусловлено тем, что У. и. этого диапазона сильно поглощается воздухом и его исследование возможно только в вакууме.
Ближнее У. и. открыто в 1801 нем. учёным И. В. Риттером и англ. учёным У. Волластоном, вакуумное до 130 нмнем. физиком В. Шуманом (18851903), а до 25 нмангл. физиком Т. Лайманом (1924). Промежуток между вакуумным У. и. и рентгеновским изучен к 1927.
Спектр У. и. может быть линейчатым (спектры изолированных атомов, ионов, лёгких молекул), непрерывным (спектры тормозного или рекомбинац. излучения) или состоять из полос (спектры тяжёлых молекул; (см. СПЕКТРЫ ОПТИЧЕСКИЕ)).
При взаимодействии У. и. с в-вом могут происходить ионизация его атомов и фотоэффект. Оптич. св-ва в-в в УФ области спектра значительно отличаются от их оптич. св-в в видимой области. Характерно уменьшение прозрачности в У. и. (увеличение коэфф. поглощения) большинства тел, прозрачных в видимой области. Напр., обычное стекло непрозрачно при 320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий (имеет наиболее далёкую границу прозрачностидо l=105 нм) и нек-рые др. материалы. Из газообразных в-в наибольшую прозрачность имеют инертные газы, граница прозрачности к-рых определяется величиной их ионизационного потенциала (самую коротковолновую границу прозрачности имеет Неl=50,4 нм). Воздух непрозрачен практически при l<185 нм из-за поглощения У. и. кислородом.
Коэфф. отражения всех материалов (в т. ч. металлов) уменьшается с уменьшением l. Напр., коэфф. отражения свеженапылённого Аl, одного из лучших материалов для отражающих покрытий в видимом диапазоне, резко уменьшается при l<90 нм и значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области длин волн <80 нм нек-рые материалы имеют коэфф. отражения 1030% (золото, платина, радий, вольфрам и др.), однако при l<40 нм и их коэфф. отражения снижается до 1% и ниже.
Источники У. и. Излучение накалённых до темп-р =3000 К тв. тел содержит заметную долю У. и. непрерывного спектра, интенсивность к-рого растёт с увеличением темп-ры. Более мощный источник У. и.— любая высокотемпературная плазма. Для различных применений У. и. используются ртутные, ксеноновые и др. газоразрядные лампы, окна к-рых (либо целиком колбы) изготовляют из прозрачных для У. и. материалов (чаще из кварца). Интенсивное У. и. непрерывного спектра испускают эл-ны в ускорителе (см. СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ). Для УФ области существуют лазеры, наименьшую длину волны испускает лазер с умножением частоты (l=38 нм).
Естеств. источники У. и.— Солнце, звёзды, туманности и др. космич. объекты. Однако лишь длинноволновая часть их излучения (l>290 нм) достигает земной поверхности. Более коротковолновое излучение поглощается атмосферой на выс. 30200 км, что играет большую роль в атм. процессах. У. и. звёзд и др. космич. тел, кроме того, в интервале l=91,220 нм практически полностью поглощается межзвёздным водородом.
Приёмники У. и. Для регистрации У. и. при l=230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны спец. маложелатиновые фотослои. Применяются фотоэлектрич. приёмники, использующие способность У. и. вызывать ионизацию и фотоэффект: фотодиоды, ионизац. камеры, счётчики фотонов, фотоумножители и т. д. Разработан также особый вид фотоумножителейканаловые электронные фотоумножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка явл. каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрич. изображения в У. и. и объединяют преимущества фотографич. и фотоэлектрич. методов регистрации излучения. При исследовании У. и. также используют разл. люминесцирующие в-ва, преобразующие У. и. в видимое. На их основе созданы приборы для визуализации изображения в У. и.
Применение У. и. Изучение спектров испускания, поглощения и отражения в УФ области позволяет определять электронную структуру атомов, молекул, ионов, твёрдых тел. УФ спектры Солнца, звёзд, туманностей несут информацию о физ. процессах, происходящих в горячих областях этих космич. объектов. На фотоэффекте, вызываемом У. и., основана фотоэлектронная спектроскопия. У. и. может нарушать хим. связи в молекулах, в результате чего могут возникать разл. фотохим. реакции, что послужило основой для фотохимии. Люминесценция под действием У. и. используется для создания люминесцентных ламп, светящихся красок, в люминесцентном анализе, дефектоскопии. У. и. применяется в криминалистике и искусствоведении. Способность разл. в-в к избирательному поглощению У. и. используется для обнаружения вредных примесей в атмосфере и в УФ микроскопии.
Биологическое действие У. и. У. и. поглощается верх. слоями тканей растений, кожи человека или животных. При этом происходят хим. изменения молекул биополимеров. Малые дозы оказывают благотворное действие на организмыспособствуют образованию витаминов группы D, улучшают иммунобиол. свойства. Большие дозы могут вызывать повреждение глаз и ожог кожи.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ

(от лат. ultra - сверх, за пределами и фиолетовый) (ультрафиолетовые лучи, УФ-излучение) - не видимое глазом эл.-магн. излучение, занимающее спектральную область между видимым и рентг. излучениями в пределах длин волн l от 400 до 10 нм. Область У. и. условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм), области; последнее название связано с тем, что У. и. этого диапазона сильно поглощается воздухом и его исследование возможно только в вакууме.

Ближнее У. и. открыто И. В. Риттером (J. W. Ritter) и независимо У. Волластоном (W. Wollaston) в 1801, вакуумное У. и. с l до 130 нм - В. Шуманом (V. Schumann) в 1885-1903, а с l до 25 нм - T. Лайманом (T. Lyman) в 1924. Промежуток между вакуумным У. и. и рентгеновским излучением изучен к 1927.

Спектр У. и. может быть линейчатым (спектры изолир. атомов, ионов, лёгких молекул, напр. H2), непрерывным (спектры тормозного и рекомбинационного излучений) или состоять из полос (молекулярные спектры).

Оптические свойства У. и. При взаимодействии У. и. с веществом могут происходить ионизация его атомов и фотоэффект. Оптич. свойства веществ в УФ-области спектра значительно отличаются от их оптич. свойств в видимой и ИК-областях. Характерной чертой для УФ-излучения является уменьшение прозрачности (увеличение коэф. поглощения) большинства тел, прозрачных в видимой области. Напр., обычное стекло непрозрачно для У. и. с l=320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий (имеет наиб. далёкую границу прозрачности-до l=105 нм) и нек-рые др. материалы. Из газообразных веществ наиб. прозрачность имеют инертные газы, граница прозрачности к-рых определяется величиной их ионизац. потенциала (самую коротковолновую границу прозрачности имеет Не-l=50,4 нм). Воздух непрозрачен практически при l<185 нм из-за поглощения У. и. кислородом.

Коэф. отражения всех материалов (в т. ч. металлов) в УФ-области убывает с уменьшением l. Напр., коэф. отражения свеженапылённого Al, одного из лучших материалов для отражающих покрытий в видимом диапазоне, резко уменьшается при l<90 нм и значительно уменьшается также вследствие окисления поверхности (для защиты поверхности алюминия от окисления применяют покрытия из фтористого лития или фтористого магния). В области длин волн l<80 нм нек-рые материалы имеют коэф. отражения 10-30% (золото, платина, радий, вольфрам и др.), однако при l<40 нм и их коэф. отражения снижается до 1 % и ниже.

В оптике У. и. применяют мн. элементы рентгеновской оптики (многослойные покрытия и т. д.).

Источники У. и. Излучение накалённых до темп-р ~3000 К твёрдых тел содержит заметную долю У. и. непрерывного спектра, интенсивность к-рого растёт с увеличением темп-ры. Более мощный источник У. и.- газоразрядная и высокотемпературная плазма. Для разл. применений У. и. используют ртутные, ксеноновые и др. газоразрядные лампы, окна к-рых (либо целиком колбы) изготовляют из прозрачных для У. и. материалов (чаще из кварца). Интенсивное У. и. непрерывного спектра испускают электроны в ускорителе (см. Синхротронное излучение). Для УФ-области существуют лазеры (наим. длину волны испускает лазер на переходах в никелеподобном ионе

5042-1.jpg нм).

Естеств. источники У. и.- Солнце, звёзды, туманности и др. космич. объекты. Однако лишь длинноволновая часть их излучения (l>290 нм) достигает земной поверхности. Более коротковолновое излучение поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30-200 км, что играет большую роль в атм. процессах. У. и. звёзд и др. космич. тел, кроме того, в интервале l=91,2-20 нм практически полностью поглощается межзвёздным водородом (см. Ультрафиолетовая астрономия).

Приёмники У. и. Для регистрации У. и. при l>230 нм используют обычные фотоматериалы, в более коротковолновой области к нему чувствительны спец. маложелатиновые фотослои. Применяются фотоэлектрич. приёмники, использующие способность У. и. вызывать ионизацию и фотоэффект: фотодиоды, фотоумножители и т. <д. Разработан также особый вид фотоумножителей - каналовые электронные фотоумножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрич. изображения в У. и. и объединяют преимущества фотогр. и фотоэлектрич. методов регистрации излучения. При исследовании У. и. также используют разл. люминесцирующие вещества, преобразующие У. и. в видимое. На их основе созданы приборы для визуализации изображения в У. и.

Применение У. и. Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, молекул, ионов, твёрдых тел. УФ-спектры Солнца, звёзд, туманностей несут информацию о физ. процессах, происходящих в горячих областях этих космич. объектов. На фотоэффекте, вызываемом У. и., основана фотоэлектронная спектроскопия. У. и. может нарушать хим. связи в молекулах, в результате чего могут возникать разл. фотохим. реакции (окисление, восстановление, полимеризация и т. д.), что послужило основой для фотохимии. Люминесценция под действием У. и. используется для создания люминесцентных ламп, светящихся красок, в люминесцентном анализе, дефектоскопии. У. и. применяется в криминалистике и искусствоведении. Способность разл. веществ к избират. поглощению У. и. используется для обнаружения вредных примесей в атмосфере и в УФ-микроскопии.

Биологическое действие ультрафиолетового излучения. У. и. поглощается верх. слоями тканей растений, кожи человека или животных. При этом происходит хим. изменение молекул биополимеров. Малые дозы оказывают благотворное действие на организмы-способствуют образованию витаминов группы D, улучшают иммунобиол. свойства. Большие дозы могут вызывать повреждение глаз и ожоги кожи.

Лит.: Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., M., 1952; Samson J. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y., 1967; Зайдель A. H., Шрейдер Е. Я., Вакуумная спектроскопия и ее применение, M., 1976. A. H. Рябцев.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ" в других словарях:

  • Ультрафиолетовое излучение — Электромагнитное излучение оптического диапазона с длиной волны от 200 до 400 нм и частотой от 10(13) Гц до 10(16) Гц, подразделяемое в зависимости от биологической активности на область УФ А (400 315 нм), УФ В (315 280 нм) и УФ С (280 200 нм).… …   Словарь-справочник терминов нормативно-технической документации

  • Ультрафиолетовое излучение — (УФ излучение), не видимое глазом электромагнитное излучение в пределах длин волн 400 10 нм. Различают ближнее (400 200 нм) и дальнее (200 10 нм) ультрафиолетовое излучение. Источники Солнце, звезды, ультрафиолетовые лазеры, плазма и др.… …   Иллюстрированный энциклопедический словарь

  • ультрафиолетовое излучение — Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 50 Å до 0,40 мкм. Примечания. Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума. Наряду с термином «излучение»… …   Справочник технического переводчика

  • УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ — УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ, ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ с более короткой длиной волны и более высокой частотой по сравнению с видимым светом. Типичная длина волны приблизительно в пределах 4 400 нм (нанометров), а видимого света в зоне от 400 нм… …   Научно-технический энциклопедический словарь

  • УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ — неионизирующее электромагнитное излучение оптического диапазона с длиной волны λ = = 400 10 нм и частотой 1013 1016 Гц. Условно делится на ближнее (400 200 нм) и дальнее, или вакуумное (200 10 нм). По международной классификации подразделяется на …   Российская энциклопедия по охране труда

  • УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ — не видимое глазом электромагнитное излучение в пределах длин волн ??400 10 нм. Различают ближнее ультрафиолетовое излучение (400 200 нм) и дальнее, или вакуумное (200 10 нм). С уменьшением ? коэффициент поглощения ультрафиолетового излучения… …   Большой Энциклопедический словарь

  • УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ — см. Радиация ультрафиолетовая. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 …   Экологический словарь

  • Ультрафиолетовое излучение — Запрос «Ультрафиолет» перенаправляется сюда; см. также другие значения. Электромагнитное излучение Синхротронное Циклотронное Тормозное Тепловое Монохроматическое Черенковское Переходное Радиоизлучение …   Википедия

  • ультрафиолетовое излучение — не видимое глазом электромагнитное излучение в пределах длин волн λ = 400 10 нм. Различают ближнее ультрафиолетовое излучение (400 200 нм) и дальнее, или вакуумное (200 10 нм). С уменьшением λ коэффициент поглощения ультрафиолетовое излучение… …   Энциклопедический словарь

  • Ультрафиолетовое излучение — (от Ультра... и фиолетовый)         ультрафиолетовые лучи, УФ излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400 10 нм. Вся область У. и.… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
https://dic.academic.ru/dic.nsf/enc_physics/758/%D0%A3%D0%9B%D0%AC%D0%A2%D0%A0%D0%90%D0%A4%D0%98%D0%9E%D0%9B%D0%95%D0%A2%D0%9E%D0%92%D0%9E%D0%95 Нажмите правой клавишей мыши и выберите «Копировать ссылку»