ЧЕРЕНКОВА -ВАВИЛОВА ИЗЛУЧЕНИЕ


ЧЕРЕНКОВА -ВАВИЛОВА ИЗЛУЧЕНИЕ
ЧЕРЕНКОВА -ВАВИЛОВА ИЗЛУЧЕНИЕ

(Черенкова - Вавилова эффект, иногда наз. Вавилова - Черенкова излучение) - излучение света электрически заряженной частицей, возникающее при её движении в среде с пост. скоростью ?, превышающей фазовую скорость света в этой среде (скорость распространения в ней световых волн). Обнаружено в 1934 при исследовании П. А. Черенковым ?-люминесценции растворов как слабое голубое свечение жидкостей под действием g-излучения. Эксперименты Черенкова, предпринятые по инициативе С. И. Вавилова, выявили характерные особенности излучения: 1) свечение наблюдается у всех чистых прозрачных жидкостей, причём его яркость мало зависит от их хим. состава; 2) излучение имеет поляризацию с преим. ориентацией вектора напряжённости электрич. поля вдоль направления первичного пучка; 3) в отличие от люминесценции, не наблюдается ни температурного, ни примесного тушения. На основании этих данных Вавилов сделал основополагающее утверждение, что обнаруженное явление - не люминесценция, свет же излучают движущиеся в жидкости быстрые электроны, образующиеся при облучении вещества. Ч.- В. и. характерно не только для жидкостей, но и для твёрдых тел и газов. Свечение, вызываемое g-излучением, нек-рые учёные наблюдали и раньше (напр., M. Л. Малле, в 1926-29 получивший фотографии его спектра). Однако то, что наблюдаемое излучение - новое, ещё не изучавшееся явление, оставалось непонятым; не было установлено и наиб. характерное его свойство, обнаруженное Черенковым в 1936,- направленность излучения под острым углом к скорости частицы.

В 1937 И. E. Таммом и И. M. Франком были предложены механизм Ч.- В. и. и количеств. теория, основанная на ур-ниях классич. электродинамики. К тем же результатам пришёл в 1940 В. Л. Гинзбург, осуществивший квантовое рассмотрение эффекта.

Условие возникновения Ч.- В. и. и его направленность могут быть пояснены с помощью принципа Гюйгенса. Каждую точку ( А, В, С, D на рис. 1 и 2) траектории заряж. частицы следует считать источником волны, возникающей в момент прохождения через неё частицы. В оптически изотропной среде такие парциальные волны будут сферическими, распространяющимися со скоростью и = с/n, где n- показатель преломления среды. Допустим, что частица, двигаясь равномерно и прямолинейно со скоростью u, в момент наблюдения находилась в точке E. За время t до этого она проходила через точку A (AE=ut). Волна, испущенная из А, кмоменту наблюдения представится сферой радиусом R = ut; на рис. 1 и 2 ей соответствует окружность 1, а волнам, испущенным из В, С, D,- окружности 2, 3, 4. По принципу Гюйгенса в результате интерференции парциальные волны гасят друг друга всюду, за исключением их общей огибающей, к-рой соответствует волновая поверхность света, распространяющегося в среде.

Рис. 1. Движение заряженной частицы в среде со ско ростью u < и. Сферы 1, 2, 3, 4 - положение парциальных волн, испущенных частицей из точек А, В, С, D соответст венно.

255005-1.jpg

Пусть u < u (рис. 1), тогда световые волны будут обгонять частицу на тем большее расстояние, чем раньше они испущены. Общей огибающей парциальные волны при этом не имеют-все окружности 1, 2, 3, 4 лежат одна внутри другой; следовательно, электрич. заряд при равномерном и прямолинейном движении со скоростью u < u свет не излучает.

Если же частица движется быстрее, чем распространяются световые волны, т. е. при

255005-2.jpg

(где b =u/c), то соответствующие волнам сферы пересекаются (рис. 2), их общая огибающая (волновая поверхность) представляет собой конус с вершиной в точке E, совпадающей с мгновенным положением частицы, а нормали к образующим конуса определяют волновые векторы, т. е. направления распространения света. Угол q, к-рый составляет волновой вектор с направлением движения частицы, удовлетворяет отношению

255005-3.jpg

255005-4.jpg

Рис. 2. Движение заряженной частицы в среде со ско ростью u > u. Угол между направлениями волнового вектора возникающего излучения и скоростью части цы равен q.

Такой же метод рассмотрения можно провести и для оптически анизотропной среды (в частности, для прозрачных кристаллов, см. Оптическая анизотропия), в к-рой парциальные волны не являются сферами. В этом случае обыкновенному и необыкновенному лучам будут соответствовать разные конусы и излучение будет возникать под разными углами q к направлению распространения частицы, согласно соотношению (2). Условие (1) для оптически анизотропных сред формулируется несколько иначе. Во всех случаях осн. ф-лы теории хорошо согласуются с опытом.

Расчёт показывает, что в оптически изотропной среде частица с зарядом е, прошедшая расстояние в 1 см со скоростью u>u, излучает энергию

255005-5.jpg

(w = 2nc/l-круговая частота света, l - длина волны излучаемого света в вакууме). Подынтегральное выражение отражает распределение энергии в спектре Ч.- В. и.

В жидкостях и твёрдых веществах условие (1) начинает выполняться для электронов уже при энергиях ~ 105 эВ, для протонов, масса к-рых в ~2000 раз больше электронной,- при энергиях - 108 эВ. На основе Ч.- В. и. разработаны широко применяемые эксперим. методы для регистрации частиц высоких энергий, измерения их скорости. Приборы, применяемые для этой цели, наз. черепковскими счётчиками. Эти методы позволяют также рассчитывать массу частиц (это, напр., было использовано при открытии антипротона).

Ч.- В. и. может наблюдаться в чистом виде только в идеальных случаях, когда заряж. частица движется с пост. скоростью в радиаторе неогранич. длины. В тонком радиаторе, удовлетворяющем условию (1), Ч.- В. и. неотделимо от переходного излучения, возникающего при пересечении частицей границы раздела двух сред с разными коэф. преломления.

В 1940 Э. Ферми обобщил теорию Ч.- В. и., приняв во внимание, что реальная среда обладает способностью поглощать свет, по крайней мере, в нек-рых областях спектра. Полученные им результаты внесли существ. уточнения в теорию ионизац. потерь заряж. частицами (эффект поляризации среды).

Ч.- В. и. является примером оптики "сверхсветовых" скоростей и имеет принципиальное значение. Ч.- В. и. экспериментально и теоретически изучено не только в оптически изотропных средах, но и в кристаллах, теоретически рассмотрено излучение электрич. и магн. диполей и мультиполей. Ожидаемые свойства излучения движущегося магн. заряда были использованы для поиска магнитного монополя. Рассмотрено излучение частицы в канале внутри среды (напр., излучение пучка частиц внутри волновода) и др. Новые особенности приобретает Доплера эффект в среде; появляются т. н. аномальный и сложный

эффекты Доплера. Можно полагать, что всякая система частиц, способная взаимодействовать с эл.-магн. полем, будет излучать свет за счёт своей кинетич. энергии, если её скорость превышает фазовую скорость света.

Лит.: Черенков П. А., Видимое свечение чистых жидкостей под действием g-радиации, "ДАН СССР", 1934, т. 2, в. 8, с. 451; Вавилов С. И., О возможных причинах синего g-свечения жидкостей, там же, с. 457; Тамм И. E., Франк И. M., Когерентное излучение быстрого электрона в среде, там же, 1937, т. 14, в. 3, с. 107; Черенков П. А., Тамм И. E., Франк И. M., Нобелевские лекции. M., 1960; Джелли Дж., Черепковское излучение и его применения, пер. с англ., M.. 1960; Зрелое В. П., Излучение Вавилова - Черенкова и его применение в физике высоких энергий, т. 1 - 2, M., 1968. И. M. Франк.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Смотреть что такое "ЧЕРЕНКОВА -ВАВИЛОВА ИЗЛУЧЕНИЕ" в других словарях:

  • ИЗЛУЧЕНИЕ ЧЕРЕНКОВА — ИЗЛУЧЕНИЕ ЧЕРЕНКОВА, излучение возникающее при прохождении энергетически заряженных частиц через прозрачную среду, например, воду, со скоростью, превышающей скорость света в этой среде. Явление носит название эффекта Черенкова. Оно аналогично… …   Научно-технический энциклопедический словарь

  • Лауреаты Нобелевской премии - представители СССР и России — 1904 г. лауреат Нобелевской премии по физиологии и медицине физиолог Иван Петрович Павлов. 1908 г. лауреат Нобелевской премии по физиологии и медицине Илья Ильич Мечников. 1933 г. лауреат Нобелевской премии в области литературы Иван Алексеевич… …   Энциклопедия ньюсмейкеров

  • Астрономия — Крабовидная туманность Астрономия  наука о Вселенной, изучающая расположение, движение, строение, происхождение и …   Википедия

  • ПЛАЗМЕННАЯ — ЭЛЕКТРОНИКА раздел физики плазмы, изучающий коллективные взаимодействия плотных потоков(пучков) заряж. частпц с плазмой и газом, приводящие к возбуждению в системелинейных и нелинейных эл. магн. волн и колебаний, и использование эффектовтакого… …   Физическая энциклопедия

  • ЧЕРЕНКОВ — Павел Алексеевич (1904 90), советский физик. Работая в Физическом институте Академии Наук СССР, обнаружил, что свет (ИЗЛУЧЕНИЕ ЧЕРЕНКОВА) испускается заряженными частицами, движущимися на очень высокой скорости. Это явление известно под названием …   Научно-технический энциклопедический словарь

  • ПИРОМЕТРЫ — (от греч. руr огонь и metreo измеряю), оптич. приборы для измерения т ры гл. обр. непрозрачных тел по их излучению в оптич. диапазоне спектра (длины волн l в видимой части 0,4 0,76, в невидимой > 0,76 мкм). Совокупность методов определения с… …   Химическая энциклопедия

  • ЛАЗЕРНАЯ ПЛАЗМА — плазма, возникающая при развитии ионизации газа под действием мощного сфокусированного лазерного излучения. Л. п., образующаяся при световом пробое (л а з е р н о й и с к р е) газов, при атм. давлении имеет темп ру =2•104К, т …   Физическая энциклопедия

  • СВЕРХСВЕТОВАЯ СКОРОСТЬ — скорость, превышающая скорость света …   Физическая энциклопедия

  • Эффект Доплера — Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется длина волны увеличивается …   Википедия

  • Тяпкин, Алексей Алексеевич — Алексей Алексеевич Тяпкин …   Википедия

  • Доплера эффект — Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа ниже (меньше). Эффект Доплера изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.