ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ

ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ
ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ

- постоянные, входящие в ур-ния, описывающие фундам. законы природы и свойства материи. Ф. ф. к. определяют точность, полноту и единство наших представлений об окружающем мире, возникая в теоретич. моделях наблюдаемых явлений в виде универсальных коэф. в соответствующих матем. выражениях. Благодаря Ф. ф. к. возможны инвариантные соотношения между измеряемыми величинами. Т. о., Ф. ф. к. могут также характеризовать непосредственно измеряемые свойства материи и фундам. сил природы и совместно с теорией должны объяснять поведение любой физ. системы как на микроскопич., так и на макроскопич. уровне. Набор Ф. ф. к. не является фиксированным и тесно связан с выбором системы единиц физ. величин, он может расшириться вследствие открытия новых явлений и создания теорий, их объясняющих, и сократиться при построении более общих фундаментальных теорий.

Наиб. часто применяемыми Ф. ф. к. являются: гравитационная постоянная G, входящая в закон всемирного тяготения и ур-ния общей теории относительности (релятивистской теории гравитации, см. Тяготение); скорость света с, входящая в ур-ния электродинамики и соотношения

спец. относительности теории, определяющей единство пространства и времени, а также область релятивистских явлений; Планка постоянная h (или 5077-1.jpg=h/2p), входящая в квантовую теорию излучения, ур-ния квантовой механики и определяющая связь между величинами микро-и макромира; заряд электрона е - элементарный электрич. заряд, входящий в микроскопич. ур-ния электродинамики, в частности в Кулона закон; массы электрона т e и протона т р; Больцмана постоянная k, определяющая связь между темп-рой и характерной энергией термодинамич. системы. Развитие физики атома, атомного ядра и элементарных частиц потребовало введения ряда новых Ф. ф. к.: Ридбер-га постоянной для бесконечной массы атомного ядра Roo, определяющей атомные спектры; тонкой структуры постоянной ос, характеризующей эффекты квантовой электродинамики и тонкую структуру атомных спектров; магнитных моментов электрона и протона m е и m р; константы Ферми GF и угла Вайнберга qW, характеризующих эффекты слабого взаимодействия; массы промежуточных Z0 -и W-бозонов т Z и mW, являющихся переносчиками слабого взаимодействия, и т. д. Развитие физики сильных взаимодействий на основе кварковой модели составных адронов и квантовой хромодинамики, несомненно, приведёт к новым Ф. ф. к. С др. стороны, имеется тенденция к построению единой теории всех фундам. взаимодействий (эл.-магн., слабого, сильного и гравитационного, см. Великое объединение), что позволило бы уменьшить число независимых Ф. ф. к. Так, уже создана единая теория электрослабых взаимодействий (т. н. стандартная модель Вайнберга - Салама - Глэшоу), в результате чего константа Ферми GF перестаёт быть независимой и выражается через константы 5077-2.jpg, a, qW и mW:

5077-3.jpg

Наиб. точные значения Ф. ф. к. обычно получают путём сравнения результатов прецизионных измерений с предсказаниями соответствующих теоретич. моделей. Все перечисленные выше Ф. ф. к. (кроме a) являются размерными величинами, поэтому их численные значения зависят от размера соответствующих осн. физ. величин и выбора системы единиц, а также от степени точности измерений и расчётов. В итоге возникает довольно сложная процедура согласования значений Ф. ф. к. на основе наименьших квадратов метода с учётом соотношений, связывающих Ф. ф. к. Последнее такое согласование было проведено Р. Коэном (Е. R. Cohen) и Б. Тэйлором (В. N. Taylor) в 1986 (табл.). Уточнение значений Ф. ф. к. имеет важное значение для метрологии, а также может привести к обнаружению (или устранению уже известных) противоречий в физ. описании природы.

Использование Ф. ф. к. позволяет приблизиться к установлению "истинной" системы осн. физ. единиц на инвариантной основе, фиксированной в природе. Согласно М. Планку (М. Planck), т. н. е с т е с т в е н н ы е е д и н и ц ы и з м е р е н и я определяются так, чтобы нек-рые из Ф. ф. к. обратились в единицу (или фиксированное число). Первую попытку построить такую систему в 1874 предпринял Дж. Стони (G. J. Stoney), предложивший в качестве таких констант с, G и е. В 1899 Планком была предложена естеств. система единиц, получившая его имя. В системе единиц Планка к единице приравниваются с, G и 2p/h. При этом планковская единица массы m р получается равной (5077-4.jpgc/G)1/25077-5.jpg2,2.10-5 г, планковская единица длины l Р =5077-6.jpgP с = (5077-7.jpgG/с3)5077-8.jpg1,5.10-35 м, планковская единица времени t Р =lP/с = (5077-9.jpgG/c5)1/25077-10.jpg5,4.10-44 с. Эти единицы используются в квантовой теории гравитации, космологии и моделях единой теории фундам. взаимодействий.

В атомной физике и нерелятивистской квантовой механике применяется система атомных единиц Хартри (D. R. Hartree, 1928). В этой системе к единице приравнены т e, е и 5077-11.jpg, единицей длины служит боровский радиус а0=5077-12.jpg/m е сa5077-13.jpg5,3.10-9 см, единицей скорости - скорость электрона на первой боровской орбите u0=a с, единицей

5077-14.jpg

энергии - удвоенный ионизац. потенциал атома водорода 5077-15.jpg = m е с2a2 = 27,2 эВ (энергия Хартри).

В релятивистской квантовой теории (в частности, в квантовой электродинамике) и физике элементарных частиц обычно используется система единиц, в к-рой с =5077-16.jpg= 1. В этой системе остаётся единств. независимая единица, в качестве к-рой удобно выбрать единицу энергии элек-тронвольт или единицу длины; в этом случае электрич. заряд становится безразмерной величиной: е2 = a(5077-17.jpg с). При использовании перечисленных естеств. систем существенно упрощается запись ур-ний и соотношений в соответствующих физ. теориях за счёт уменьшения числа Ф. ф. к.

В метрологии за основную принята система СИ. Ф. ф. к. в ней применяются для установления соотношений между единицами физ. величин с целью их воспроизведения. При этом возникает единая система взаимосвязанных эталонов осн. единиц. Такая система эталонов базируется в осн. на квантовых явлениях ( квантовая метрология), её осн. элемент- эталон времени-частоты. Повышение точности измерения с привело к тому, что оказалось выгоднее фиксировать значение константы с и принять (1983) новое определение единицы длины метра как расстояния, проходимого в вакууме плоской эл.-магн. волной за (1/ с) долю секунды. Т. о., эталон длины стал связан с эталоном времени-частоты, в результате чего точность воспроизведения единицы длины существенно повысилась.

Удалось уточнить также единицу электрич. напряжения вольт. Используя соотношение, описывающее Джозефсо-на эффект:

5077-18.jpg

где п=1,2, ..., f -частота излучения, а U- напряжение, можно воспроизводить вольт через подбор соответствующей частоты и нужного числа п переходов Джозефсона, если фиксировать (1990) значение постоянной Джозефсона KJ = 2 е/h = 483597,9 ГТц . В -1. Квантовый Холла эффект характеризуется квантованным холловским сопротивлением RH = RK/i, i=1, 2, 3, ..., где постоянная фон Клит-цинга RK = h/ е2 = m0c/2a имеет размерность электрич. сопротивления. Т. о., фиксирование (1990) значения RK =25812,807 Ом даёт хорошо воспроизводимое представление единицы электрич. сопротивления.

Константа RK однозначно связана с a - осн. константой квантовой электродинамики, значение к-рой определяется с высокой точностью независимым образом. Постоянная а связана также с константой К J:

5077-19.jpg

где g' р и m'p -гиромагнитное отношение и магн. момент протона в воде, m Б - магнетон Бора. Т. о., согласование значений всех этих констант является важной задачей физики.

До сих пор не удалось дать "естеств." определение единицы массы СИ - килограмма, основанное на одной из Ф. ф. к., напр. массе элементарной частицы, атома или атомного ядра и Авогадро постоянной NA. Имеется соот-

ношение, связывающее NA с Фарадея постоянной F и др. известными Ф. ф. к.:

5077-20.jpg

что согласуется с табличным значением (1 ррт=10-6).

В настоящее время (1994) значительно возросла точность измерения постоянной Ридберга

5077-21.jpg

за счёт применения метода двухфотонной бездоплеровской спектроскопии и замены интерфсрометрич. измерений измерениями оптич. частот атома водорода. Приведённое выше значение Roo не было использовано при согласовании значений Ф. ф. к.

Ниже приведён ряд новых результатов, не отражённых в табл. Получено (1989) на порядок более точное значение для отношения магн. моментов дейтрона и протона: md/mp = 0,3070122081(4). Соответственно изменятся все др. отношения, включающие md. Измерено (1989) гиромагн. отношение протона в воде:

5077-22.jpg

Повышена (1987) точность измерения аномальных магн. моментов электрона и позитрона:

5077-23.jpg

столь близкое значение этих величин, в частности, подтверждает тождественность свойств частицы и античастицы. Сравнение вычисленного (1996) аномального магн. момента электрона а е с его эксперим. значением дало возможность уточнить значение постоянной тонкой структуры: a-1 = 137,03599993(52), (0,0038pрm).

Измерение скорости звука в аргоне (1988) позволило установить новое значение молярной газовой постоянной: R = 8,314471(14) Дж . моль -1 К -1, (1,7 ррт).

Нек-рые космологич. модели эволюции Вселенной [П. Дирак (P. Dirac), 1938; Дж. Гамов, 1967] предсказывают возможность медленного изменения Ф. ф. к. со временем, отнесённым к возрасту Вселенной. В настоящее время (1996) нет никаких эксперим. или наблюдательных (в т. ч. астр.) данных, свидетельствующих о таких изменениях (по крайней мере, линейных) для большей части истории Вселенной (трудно сказать ч.-л. определённое о значениях Ф. ф. к. на ранней стадии эволюции Вселенной вплоть до этапа нуклеосинтеза).

Лит.: Квантовая метрология и фундаментальные константы. Сб. ст., пер. с англ., М., 1981; Соhen E. R., Тауlor В. N.,The 1986 adjustment of the fundamental physical constants, "Rev. Mod. Phys.", 1987, v. 59, p. 1121; Proc. of the 1988 Conference on precision electromagnetic measurements, "IEEE Trans. on Instrumentation and Measurement", 1989, v. 38, № 2, p. 145; Двоеглазов В. В., Тюх-тяев Ю. Н., Фаустов Р. Н., Уровни энергии водородоподобных атомов и фундаментальные константы, "ЭЧАЯ", 1994, т. 25, с. 144.

Р. Н. Фаустов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ" в других словарях:

  • Фундаментальные физические константы — Фундаментальная физическая постоянная (вар.: константа)  физическая величина, характеризующая не отдельные тела, а физические свойства нашего мира в целом. Фундаментальные физические постоянные возникают при математическом описании окружающего… …   Википедия

  • ФИЗИЧЕСКИЕ КОНСТАНТЫ — см. Фундаментальные физические константы. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 …   Физическая энциклопедия

  • Фундаментальные физические постоянные — Для улучшения этой статьи желательно?: Викифицировать статью. Фундаментальные физические постоянные (вар.: ко …   Википедия

  • ФИЗИЧЕСКИЕ КОНСТАНТЫ — (физические постоянные), постоянные величины, входящие в математические выражения физических законов (например, постоянная Авогадро). Физические константы, входящие в фундаментальные физические законы (например, всемирного тяготения закон) или… …   Современная энциклопедия

  • ФИЗИЧЕСКИЕ КОНСТАНТЫ — (физические постоянные) постоянные величины, входящие в математические выражения физических законов (напр., газовая постоянная R в Клапейрона уравнении). Физические константы, входящие в фундаментальные физические законы (напр., закон всемирного… …   Большой Энциклопедический словарь

  • Физические константы — (физические постоянные), постоянные величины, входящие в математические выражения физических законов (например, постоянная Авогадро). Физические константы, входящие в фундаментальные физические законы (например, всемирного тяготения закон) или… …   Иллюстрированный энциклопедический словарь

  • физические константы — (физические постоянные), постоянные величины, входящие в математические выражения физических законов (например, газовая постоянная R в Клапейрона уравнении). Физические константы, входящие в фундаментальные физические законы (например, закон… …   Энциклопедический словарь

  • Физические константы — Фундаментальная физическая постоянная (вар.: константа)  физическая величина, характеризующая не отдельные тела, а физические свойства нашего мира в целом. Фундаментальные физические постоянные возникают при математическом описании окружающего… …   Википедия

  • Физические постоянные —         физические константы, фундаментальные постоянные, мировые постоянные, численные коэффициенты, входящие в уравнения физических законов и являющиеся в ряде случаев масштабными характеристиками физических процессов и микрообъектов. К Ф. п.… …   Большая советская энциклопедия

  • Константы мировые — (см. Константа) они же фундаментальные мировые постоянные, физические константы, фундаментальные физические постоянные физические постоянные, входящие в фундаментальные физические законы (например закон всемирного тяготения) или являющиеся… …   Начала современного естествознания


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»