НЕГОЛОНОМНАЯ СИСТЕМА

НЕГОЛОНОМНАЯ СИСТЕМА
НЕГОЛОНОМНАЯ СИСТЕМА

- моханич. система, на к-рую кроме геом. связей наложены ещё дифференциальные (кинематич.) связи, не сводящиеся к геометрическим и называемые неголономными (см. Голономная система). Математически неголономные связи выражаются ур-ниями вида:

3051-4.jpg

где х i, yi, zi - координаты, 3051-5.jpg - проекции скоростей, t - время, r - число наложенных связей. При этом предполагается, что ур-ния (1) не могут быть непосредственно проинтегрированы; в противном случае получим голо номную систему. Число координат xi, yi, zi, определяющих положение H. с., больше числа степеней свободы системы. T. к. ур-ния (1) непосредственно не интегрируются, для H. с., в отличие от голономной, нельзя заранее выразить зависимые координаты через независимые.

H. с. наз. линейной, если ур-ния (1) линейны относительно скоростей, т. е. имеют вид:

3051-6.jpg

где а, b, с и d- ф-ции xi, yi, zi и t ; N - число точек системы.

Пример линейной H. с.- шар, катящийся по шероховатой плоскости. Ур-ние связи, выражающее тот факт, что точка касания шара имеет скорость, равную нулю, не может быть проинтегрировано. Возможные перемещения точек системы при связях (2) удовлетворяют условиям:

3051-7.jpg

Движение линейных H. с. можно изучать с помощью Чаплыгина уравнений, Аппеля уравнений и др. С учётом условий (3) эти ур-ния могут быть получены из дифференциальных принципов ( Д'Аламбера - Лагранжа принцип и Гаусса принцип )или же из обобщённого интегрального принципа Гамильтона - Остроградского.

H. с. наз. нелинейной, если ур-ния (1) нелинейны относительно скоростей. Пример: система двух точек М(х, у, zM1(x1, y1, z1), в к-рой точка M1. движется по заданному закону, а скорость точки M зависит от взаимного расположения точек, напр. от расстояния MM1. Ур-ние связи будет

3051-8.jpg

Ур-ния движения нелинейных II. с. могут быть получены из тех же принципов механики, что и для линейных H. с., если возможные перемещения точек системы удовлетворяют условию Четаова:

3051-9.jpg

Механика H. с. находит приложения при решении ряда задач совр. техники (автоматика, кибернетика и др.). Лит.: Чаплыгин С. А., Исследования по динамике него-лономных систем, M.- Л., 1949; Герц Г., Принципы механики, изложенные в новой связи, пер. с нем., M., 1Я59; Добронравов В. В., Основы механики неголономных систем, M., 1970. Г. С. Погасав.

НEEЛЯ СТЕНКА - область между соседними домона-ми (см. Магнитная доменная структура )в тонких магнитных плёнках, в к-рой быстрое пространств. изменение намагниченности M. происходит в плоскости расположения векторов намагниченности доменов (в плоскости, параллельной поверхности плёнки). Согласно определению, в H. с., в отличие от Блоха стенки,divM 3051-10.jpg 0. Представление о доменных стенках (ДС) подобного типа впервые было введено JI. Неелем (L. Neel, 1955) [1].

3051-11.jpg

Причину образования H. с. удобно объяснить, используя рисунок. Если в топкой плёнке толщиной d при переходе от левого домена к правому (рис., а) намагниченность M вращается так, что остаётся параллельной плоскости ДС (стенка Блоха, плоскость xz), то в узкой полоске шириной d (толщина ДС) на поверхности плёнки образуются магнитостатич. заряды, приводящие к увеличению полной энергии стенки [2]. Эта энергия при условии d < d может быть снижена, если поворот M будет осуществляться в плоскости плёнки, как изображено на рис., б (стенка Нееля). С этим снижением полной энергии плёнки и связана энергетич. выгодность образования H. с. в тонких плёнках. По совр. оценкам, критич. толщина плёнки d кp, ниже к-рой выгодно образование H. с. в тонких плёнках, составляет сотни ангстрем.

Лит.:1) Neеl L., Energie des parois de Bloch dans les couches minces, "С. R. hebd. Seanc. Acad. Sei.", 1955, v, 241, p. 533; 2)Вонсовский С. В., Магнетизм, M., 1971.

Б. H. Филиппов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "НЕГОЛОНОМНАЯ СИСТЕМА" в других словарях:

  • Неголономная система — Неголономная система  механическая система, на которую, кроме геометрических, накладываются и кинематические связи, которые нельзя свести к геометрическим (их называют неголономными). Математически неголономные связи выражаются… …   Википедия

  • НЕГОЛОНОМНАЯ СИСТЕМА — см. Голономная система …   Большой Энциклопедический словарь

  • неголономная система — Механическая система, на которую наложены неголономные связи. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика Обобщающие… …   Справочник технического переводчика

  • неголономная система — см. Голономная система. * * * НЕГОЛОНОМНАЯ СИСТЕМА НЕГОЛОНОМНАЯ СИСТЕМА, см. Голономная система (см. ГОЛОНОМНАЯ СИСТЕМА) …   Энциклопедический словарь

  • неголономная система — neholonominė sistema statusas T sritis fizika atitikmenys: angl. non holonomic system vok. nichtholonomes System, n rus. неголономная система, f pranc. système non holonomique, m …   Fizikos terminų žodynas

  • неголономная система — Механическая система, на которую наложена хотя бы одна неголономная связь …   Политехнический терминологический толковый словарь

  • НЕГОЛОНОМНАЯ СИСТЕМА — см. Голономная система …   Естествознание. Энциклопедический словарь

  • Неголономная механика — Неголономная система  механическая система, на которую, кроме геометрических, накладываются и кинематические связи. Кинематические связи нельзя свести к геометрическим и их называют неголономными. Математически неголономные связи выражаются… …   Википедия

  • Голономная система — Голономная система  механическая система, все механические связи которой можно свести к геометрическим (то есть, к голономным). Такие связи сводятся к ограничениям только на положения тел системы. Уравнения связи записывают в виде: где… …   Википедия

  • Механика — (греч. μηχανική  искусство построения машин)  область физики, изучающая движение материальных тел и взаимодействие между ними. Движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве[1].… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»