ИНВАРИАНТНОЕ ИНТЕГРИРОВАНИЕ

ИНВАРИАНТНОЕ ИНТЕГРИРОВАНИЕ
ИНВАРИАНТНОЕ ИНТЕГРИРОВАНИЕ

- вид интегрирования для ф-ций, аргументом к-рых являются элементы группы или точки однородного пространства (любую точку такого пространства можно перевести в другую заданным действием группы). И. и. согласовано с действием группы: значение интеграла не меняется при заменах переменных, отвечающих этому действию, а якобиан замены равен 1.И. и.- стандартный приём для построения функционального интеграла, служащего эфф. средством изучения калибровочных полей, разл. моделей квантовой теории поля. <Если пространство аргументов X является многообразием (т. е. допускает введение локальных координат x1,...,х п), И. и. функции f(x )сводится к вычислению интеграла от дифференциальной формы f.w, где 1-69.jpg ; явная ф-ла для r( х )приводится ниже. Условие согласования имеет вид
1-70.jpg ;
здесь Tg означает оператор сдвига на X с помощью gОG: Tgf(x)=f(g-1x). Пусть X=G - топология, группа, действующая на себе левыми сдвигами. И. и. существует тогда и только тогда, когда G локально компактна (в частности, на бесконечномерных группах И. и. не существует). Для подмножества 1-71.jpg И. и. характеристич. ф-ции cA (равной 1 на A и 0 вне А )задаёт левую меру Xаара m(A). Определяющим свойством этой меры является её инвариантность при левых сдвигах: m(g-1A)=m( А )для всех gОG. Левая мера Хаара на группе определена однозначно с точностью до положит, скалярного множителя. Если известна мера Хаара m, то И. и. ф-ции f даётся ф-лой 1-72.jpg. Аналогичными свойствами обладает правая мера Хаара. Существует непрерывный гомоморфизм (отображение, сохраняющее групповое свойство) DG группы G в группу (относительно умножения) положит. чисел, для к-рого
1-73.jpg
где dmr и dmi - правая и левая меры Хаара. Ф-цию DG(g) наз. модулем группы G. Если 1-74.jpg , то группа G наз. унимодулярной; в этом случае правая и левая меры Хаара совпадают. Компактные, полупростые и нильпотентные (в частности, коммутативные) группы унимодулярны. Если G - n-мерная группа Ли и q1, ...,qn - базис в пространстве левоинвариантных 1-форм на G, то левая мера Хаара на G задаётся n-формой 1-75.jpg. В локальных координатахдля вычисления
1-76.jpg
форм qi можно воспользоваться любой матричной реализацией группы G: матричная 1-форма g-1dg левоинвариантна, а её коэф. являются левоинва-риантными скалярными 1-формами, из к-рых и выбирается искомый базис. Напр., полная матричная группа GL(n, R )унимодулярна и мера Хаара на ней задаётся формой. <Пусть 1-77.jpg X=G/H - однородное пространство, для к-рого локально компактная группа G является группой преобразований, а замкнутая подгруппа Н - стабилизатором нeк-рой точки. Для того чтобы на X существовало И. и., необходимо и достаточно, чтобы для всех h О H выполнялось равенство DG(h)=DH(h). В частности, это верно в случае, когда Н компактна или полупроста. <Полной теории И. и. на бесконечномерных многообразиях не существует. Отд. примеры см. в статьях Функциональный интеграл, Винеровский функциональный интеграл, Калибровочные поля. Лит.: Вейль А., Интегрирование в топологических группах и его применения, пер. с франц., М., 1950; Кириллов А. А., Элементы теории представлений, 2 изд., М., 1978; Славное А. А., Фаддеев Л. Д., Введение в квантовую теорию калибровочных полей, 2 изд., М., 1988. А. А. Кириллов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Смотреть что такое "ИНВАРИАНТНОЕ ИНТЕГРИРОВАНИЕ" в других словарях:

  • ИНВАРИАНТНОЕ ИНТЕГРИРОВАНИЕ — на группе интегрирование функций на топологич. группе, обладающее нек рым определенным свойством инвариантности относительно групповых операций. А именно, пусть G локально компактная топологич. группа, C0(G) векторное пространство всех… …   Математическая энциклопедия

  • ПРЕДСТАВЛЕНИЕ ГРУППЫ — изображение элементов группы матрицами или преобразованиями линейного пространства, при к ром сохраняется исходная групповая структура. Поскольку достаточно хорошо изучены матричные группы, при исследовании произвольной группы стараются… …   Физическая энциклопедия

  • ПОЧТИ ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ — функция, к рая может быть представлена обобщенным рядом Фурье. Существуют различные способы определения классов П. п. ф., основанные на понятиях замыкания, почти периода, сдвига. Каждый из классов П. п. ф. получается в результате замыкания в том… …   Математическая энциклопедия

  • ХААРА МЕРА — ненулевая положительная мера на кольце . подмножеств Елокально компактной группы G, порожденном семейством всех компактных подмножеств, принимающая конечные значения на всех компактных подмножествах в Gи удовлетворяющая либо условию… …   Математическая энциклопедия

  • СУПЕРПРОСТРАНСТВО — расширенное пространство в теории суперсимметрии, к рое кроме обычных пространственно временных координат включает также спинорные координаты. Спинорные переменные qa антикоммутируют друг с другом и коммутируют с координатами пространства времени …   Физическая энциклопедия

  • ЛОРЕНЦА АТТРАКТОР — компактное инвариантное множество Lв трехмерном фазовом пространстве гладкого потока {St}, к рое имеет указанную ниже сложную топологич. структуру и является асимптотически устойчивым (т. е. оно устойчиво по Ляпунову и все траектории из нек рой… …   Математическая энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»