ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

- колебания, при к-рых физ. (или любая другая) величина изменяется во времени по синусоидальному закону 1119921-615.jpg1119921-616.jpg, где х - значение колеблющейся величины в момент времени t (для механич. Г. к., напр., смещение и скорость, для электрич.- напряжение и сила тока), 1119921-617.jpg - пост. величины: А - амплитуда, 1119921-618.jpg- круговая частота, 1119921-619.jpg - полная фаза колебаний, 1119921-620.jpg- нач. фаза колебаний.

Г. к. занимают среди всех колебаний особое место, т. к. это единств. тип колебаний, форма к-рых не искажается при прохождении через любую линейную систему. Кроме того, любое негармонич. колебание может быть представлено в виде суммы (интеграла) различных Г. к., т. е. в виде спектра Г. к.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ" в других словарях:

  • ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется …   Современная энциклопедия

  • Гармонические колебания — ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется …   Иллюстрированный энциклопедический словарь

  • Гармонические колебания —         Колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (ωt + φ) или х …   Большая советская энциклопедия

  • ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда оно колеблется вдоль линии, перемещаясь на одинаковое… …   Научно-технический энциклопедический словарь

  • ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — колебания, при к рых физ. (или любая другая) величина изменяется с течением времени по синусоидальному закону: x=Asin(wt+j), где x значение колеблющейся величины в данный . момент времени t (для механич. Г. к., напр., смещение или скорость, для… …   Физическая энциклопедия

  • гармонические колебания — Механические колебания, при которых обобщенная координата и (или) обобщенная скорость изменяются пропорционально синусу с аргументом, линейно зависящим от времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук …   Справочник технического переводчика

  • ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — (см.), при которых физ. величина изменяется с течением времени по закону синуса или косинуса (напр. изменения (см.) и скорости при колебании (см.) или изменения (см.) и силы тока при электрических Г. к.) …   Большая политехническая энциклопедия

  • ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — характеризуются изменением колеблющейся величины x (напр., отклонения маятника от положения равновесия, напряжения в цепи переменного тока и т. д.) во времени t по закону: x = Asin (?t + ?), где А амплитуда гармонических колебаний, ? угловая… …   Большой Энциклопедический словарь

  • Гармонические колебания — 19. Гармонические колебания Колебания, при которых значения колеблющейся величины изменяются во времени по закону Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ — периодич. колебания, при к рых изменение во времени физ. величины происходит по закону синуса или косинуса (см. рис.): s = Аsin(wt+ф0), где s отклонение колеблющейся величины от её ср. (равновесного) значения, А=const амплитуда, w= const круговая …   Большой энциклопедический политехнический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»