- ФЛУКТУАЦИИ ЭЛЕКТРИЧЕСКИЕ
- ФЛУКТУАЦИИ ЭЛЕКТРИЧЕСКИЕ
-
хаотич. изменения потенциалов, токов и зарядов в электрич. цепях и линиях передачи, вызываемые тепловым движением носителей заряда и др. физ. процессами в в-ве, обусловленными дискретной природой электричества (естеств. Ф. э.), а также случайными изменениями и нестабильностью характеристик цепей (технич. Ф. э.). Ф. э. возникают в проводниках, в электронных и ионных приборах, а также в атмосфере, где происходит распространение радиоволн. Ф. э. приводят к появлению ложных сигналов — шумов на выходе усилителей электрич. сигналов, ограничивают их чувствительность и помехоустойчивость, уменьшают стабильность генераторов и устойчивость систем автоматич. регулирования и т. д.В проводниках в результате теплового движения носителей заряда возникает флуктуирующая разность потенциалов (тепловой шум). В металлах из-за большой концентрации электронов проводимости и малой длины их свободного пробега тепловые скорости электронов во много раз превосходят скорость направленного движения (дрейфа) в электрич. поле. Поэтому Ф. э. в металлах зависят от темп-ры, но не зависят от приложенного напряжения (см. НАЙКВИСТА ФОРМУЛА). При комнатной темп-ре интенсивность тепловых Ф. э. остаётся постоянной до частот w =1012 Гц. Хотя тепловые Ф. э. возникают только в активных сопротивлениях, наличие в цепи реактивных элементов (конденсаторов и катушек индуктивности) может изменить частотный спектр Ф. э.В неметаллич. проводниках Ф. э. увеличиваются за счёт медленной случайной перестройки структуры проводника под действием тока (при w?1кГц). Эти Ф. э. на неск. порядков превышают тепловые.Ф. э. в электровакуумных и ионных приборах связаны гл. обр. со случайным характером электронной эмиссии с катода (дробовой шум). Интенсивность дробовых Ф. э. практически постоянна для w=108 Гц. Она зависит от присутствия остаточных ионов и величины пространств. заряда. Дополнит. источники Ф. э. в этих приборах — вторичная электронная эмиссия с анода и сеток электронных ламп, динодов фотоэлектронных умножителей и т. п., а также случайное перераспределение тока между электродами. Наблюдаются также медленные Ф. э., связанные с разл. процессами на катоде (см. ФЛИККЕР-ЭФФЕКТ). В газоразрядных приборах низкого давления Ф. э. возникают из-за теплового движения электронов.В полупроводниковых приборах Ф. э. обусловлены случайным характером процессов генерации и рекомбинации электронов и дырок (генерационно-рекомбинационный шум) и диффузии носителей заряда (диффузионный шум). Оба процесса дают вклад как в тепловой, так и в дробовой шумы полупроводниковых приборов. Частотный спектр этих Ф. э. определяется временами жизни и дрейфа носителей. В полупроводниковых приборах на НЧ наблюдаются также Ф. э., обусловленные «улавливанием» электронов и дырок дефектами кристаллич. решётки (модуляционный шум).В приборах квантовой электроники Ф. э. ничтожно малы и обусловлены спонтанным излучением (см. КВАНТОВЫЙ УСИЛИТЕЛЬ).Т. н. технич. Ф. э. связаны с температурными изменениями параметров цепей и их «старением», нестабильностью источников питания, с помехами от пром. установок, вибрацией и толчками, с нарушениями электрич. контактов и т. п.Ф. э. в генераторах электрических колебаний вызывают модуляцию амплитуды и частоты колебаний (см. МОДУЛЯЦИЯ КОЛЕБАНИЙ), что приводит к появлению непрерывного частотного спектра колебаний и к уширению спектральной линии генерируемых колебаний до 10-7—10-12 от несущей частоты.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- ФЛУКТУАЦИИ ЭЛЕКТРИЧЕСКИЕ
-
- хаотич. изменения потенциалов, токов и зарядов в электрич. цепях и линиях передачи, вызываемые тепловым движением носителей заряда и др. физ. процессами в веществе, обусловленными дискретной природой электричества (естеств. Ф. э.), а также случайными изменениями и нестабильностью характеристик цепей (техн. Ф. э.). Ф. э. возникают в проводниках, электронных и ионных приборах, а также в атмосфере, где происходит распространение радиоволн. Ф. э. приводят к появлению ложных сигналов - шумов на выходе усилителей электрич. сигналов, ограничивают их чувствительность и помехоустойчивость, уменьшают стабильность генераторов и устойчивость систем автоматич. регулирования и т. д.
В проводниках в результате теплового движения носителей заряда возникает флуктуирующая разность потенциалов (тепловой шум). В металлах из-за большой концентрации электронов проводимости и малой длины их свободного пробега тепловые скорости электронов во много раз превосходят скорость направленного движения (дрейфа) в электрич. поле. Поэтому Ф. э. в металлах зависят от темп-ры, но не зависят от приложенного напряжения (см.
Найквиста формула). При комнатной темп-ре интенсивность тепловых Ф. э. остаётся постоянной до частот . Хотя тепловые Ф. э. возникают только в активных сопротивлениях, наличие в цепи реактивных элементов (конденсаторов и катушек индуктивности) может изменить частотный спектр Ф. э.
В неметаллич. проводниках Ф. э. увеличиваются за счёт медленной случайной перестройки структуры проводника под действием тока (при ). Эти Ф. э. на неск. порядков превышают тепловые.
Ф. э. в эл.-вакуумных и ионных приборах связаны гл. обр. со случайным характером электронной эмиссии с катода (дробовой шум). Интенсивность дробовых Ф. э. практически постоянна для f< 108 Гц. Она зависит от присутствия остаточных ионов и величины пространств, заряда. Дополнит, источники Ф. э. в этих приборах - вторичная электронная эмиссия с анода и сеток электронных ламп, динодов фотоэлектронных умножителей и т. п., а также случайное перераспределение тока между электродами. Наблюдаются также медленные Ф. э., связанные с разл. процессами на катоде. В газоразрядных приборах низкого давления Ф. э. возникают из-за теплового движения электронов.
В полупроводниковых приборах Ф. э. обусловлены случайным характером процессов генерации и рекомбинации электронов и дырок (генерационно-рекомбинац. шум) и диффузии носителей заряда (диффузионный шум). Оба процесса дают вклад как в тепловой, так и в дробовой шумы полупроводниковых приборов. Частотный спектр этих Ф. э. определяется временами жизни и дрейфа носителей. В полупроводниковых приборах на низких частотах наблюдаются также Ф. э., обусловленные «улавливанием» электронов и дырок дефектами кристаллич. решётки (модуляционный шум).
В приборах квантовой электроники Ф. э. ничтожно малы и обусловлены спонтанным излучением (см. Квантовый усилитель).
Так называемые техн. Ф. э, связаны с температурными изменениями параметров цепей и их «старением», нестабильностью источников питания, с помехами от промышл. установок, вибрацией и толчками, с нарушениями электрич. контактов и т. п.
Ф. э. в генераторах электромагнитных колебаний вызывают модуляцию амплитуды и частоты колебаний (см. Модулированные колебания), что приводит к появлению непрерывного частотного спектра колебаний и к ушире-нию спектральной линии генерируемых колебаний до 10-7-10-12 от несущей частоты.
Лит.: Бонч-Бруевич А. M., Радиоэлектроника в экспериментальной физике, M., 1966; Малахов A. H., Флуктуации в автоколебательных системах, M., 1968; Ван дер Зил А., Шум [в электронных приборах], пер. с англ., M., 1973; Cyходоев И. В., Шумы электрических цепей, M., 1975; Рытов С. M., Введение в статистическую радиофизику, ч. 1, M., 1976; Робинсон Ф. H. X., Шумы и флуктуации в электронных схемах и цепях, пер. с англ., M., 1980.
И. T. Трофименко.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.