- ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ
- ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ
-
вещества с хорошо выраженными пьезоэлектрич. св-вами (см. ПЬЕЗОЭЛЕКТРИКИ), применяемые для изготовления пьезоэлектрич. преобразователей. Осн. хар-ки в системе ед. СИ(см. табл.): 1) коэфф. злектромеханич. связи K=d?(c/ee0)(d — пьезомодуль, с — модуль упругости, e — диэлектрич. проницаемость, e0 — электрическая постоянная); 2) величина K2/tgd, определяющая кпд преобразователя (б — угол диэлектрич. потерь); 3) отношение механич. мощности пъезоэлемента на резонансной частоте к квадрату напряжённости электрич. поля в нём, определяется величиной (dc)2; 4) величины dc?(ecзв), и d?(сзв/?e), характеризующие относит. чувствительность приёмника звука в области резонанса и на низких частотах (cзв — скорость звука в П. м.).ОСНОВНЫЕ ПАРАМЕТРЫ НЕКОТОРЫХ ПЬЕЗОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВП. м. явл. монокристаллы, природные или искусственно выращиваемые (кварц, дигидрофосфаты калия и аммония, сегнетова соль и др.) и поликрист. тв. растворы, подвергнутые предварит. поляризации в электрич. поле (пьезокерамика). Наиболее распространённый пром. П. м.— пьезокерамика.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ
-
- вещества (диэлектрики, полупроводники), обладающие хорошо выраженными пьезоэлектрич. свойствами (см. Пьезоэлектрики).
Пьезоэлектрич. кристаллы распространены в природе в виде естеств. минералов (кварц, турмалин, цинковая обманка и др.), большинство практически важных П. м. синтезируют (сегнетова соль, ниобат лития, пьезокерамика, пьезополимеры).
П. м. используются для изготовления пьезоэлектрических преобразователей разл. назначения: в гидролокации, УЗ-технике (см. Ультразвук), акустоэлектро-нике, точной механике и др. Для изготовления пьезо-элемента выбирают П. м., сопоставляя их параметры и характеристики, к-рые определяют эффективность и стабильность работы пьезоэлектрич. преобразователя с учётом его назначения и условий эксплуатации. П. м. характеризуются след. величинами (табл.): матрицами пьезомодулей d и относительной диэлект-рич. проницаемости es, коэф. упругой податливости SE, скоростью распространения звуковых волн с, тангенсом угла диэлектрич. потерь tgd, механич. добротностью Qm, плотностью r, предельно допустимой темп-рой q (темп-pa Кюри для сегнетоэлектриков). Во мн. случаях оценивать П. м. удобнее след. параметрами: 1) коэф. эл.-механич. связи Kik (для квазистатич. режима, когда длина звуковой волны существенно превосходит размеры пьезоэлемента):
где e0=8,85·10-12 Ф/м - диэлектрич. постоянная вакуума; 2) величиной
важной для излучателей звука; 3) величиной
, к-рая входит в выражение эл.-механич. кпд преобразователей; 4) отношением
характеризующим чувствительность приёмника звука в режиме холостого хода; 5) величиной
определяющей мин. сигнал, к-рый может быть принят приёмником на фоне электрич. шумов схемы; 6) механич. добротностью Qm, определяющей акустомеханич. кпд излучателя при заданной нагрузке, полосу частот пропускания эл.-механич. фильтров, качество линий задержки.
Большое значение для мощных излучателей звука имеют предельно допустимое механич. напряжение, к-рое зависит от механич. прочности материала, стабильность свойств относительно разогрева, а также нелинейность свойств, при к-рой происходит перекачка энергии в высшие гармоники и уменьшение эффективности (кпд) на осн. частоте (рис. 1 и 2).
Примечание. Значения всех констант даны для темп-ры 16-20° С. Цифры в скобках у монокристаллов определяют индексы соответствующих тензорных характеристик, напр. (И) означает с 11, e11, d11, (36/2)-1/2d36 и т. д. Для пьезокерамики верх. значения (над чертой) для с и S имеют индексы (11), а для d и К-индекс (31); ниж. значения (под чертой) констант имеют индекс (33). Величины d31<0; d33>0. Значения tgd для кристаллов даны при напряжённости поля E<0,05 кВ/см; для пьезокерамики tgd даётся в интервале 0,05<Е<2 кВ/см; dv -объёмный пьезомодуль.
Кристаллы кварца, несмотря на их сравнительно слабые пьезоэлектрич. свойства, применяются в тех случаях, когда требуются высокая механич. добротность и стабильность по отношению к изменению темп-ры (напр., в эл.-механич. фильтрах и различных стабилизирующих устройствах). Кристаллы ADP, сульфата лития и сегнетовой соли, как П. м. для излучателей и приёмников звука, вытеснены пьезокерами-кой ввиду её высокой пьезоэлектрич. эффективности, стабильности и технологичности. Сегнетополупроводник сульфоиодид сурьмы и выполненный на его основе материал ХГС-2 перспективны для гидроакустич. приёмников звука.
Рис. 1. Зависимость тангенса диэлектрических потерь
от эффективного значения возбуждающего электрического поля для различных типов пьезокерамики.
Рис. 2. Зависимость механической добротности
(относительной) от амплитуды механического напряжения для различных типов пьезокерамики.
Свойства пьезокерамики, особенно у составов типа ЦТС, с изменением темп-ры варьируют незначительно. Изменение резонансной частоты в интервале темп-р 30-40°С достигает 1,5-2,0% (у сегнетовой соли до 40%), пьезомодуля и диэлектрич. проницаемости - 10-20%. Зависимость параметров пьезокерамики от всестороннего сжатия слаба, однако при действии одностороннего сжатия (108 Н/м 2) вдоль оси спонтанной поляризации изменение (уменьшение) пьезомодулей может достигать 30-70%, а увеличение диэлектрич. проницаемости от 5 до 60%.
Кристаллы ниобата лития, танталата лития, германа-та свинца применяются в УЗ-технике в области СВЧ-диапазона (вплоть до ГГц) и в акустоэлектронике благодаря чрезвычайно малому затуханию в них акустич. волн, как объёмных и сдвиговых, так и поверхностных. Они используются в акустооптике. Для пьезополу-проводниковых преобразователей в линиях задержки и др. устройствах акустоэлектроники используются сульфид кадмия, оксид цинка, арсенид галлия и др. пьезополупроводники.
К пьезополимерам относят как поливинилиденфторид (ПВДФ) и сополимеры на его основе, так и пьезоэлек-трич. композиционные материалы (пьезокомпозиты). Материалы на основе ПВДФ выпускаются в виде плёнок толщиной от 10 мкм до 1 мм и более, металлизован-ных и поляризованных по толщине. Пьезокомпозит может иметь структуру в виде пористого каркаса пьезокерамики, пропитанного полимером, или чаще в виде частиц пьезокерамики (порошка, тонких стерженьков), распределённых в полимере. П. м. на основе полимеров обладают высокой пьезоэлектрич. эффективностью, эластичностью и рядом технол. преимуществ.
Пьезоэффект в полимерах возникает в результате неоднородного распределения зарядов, при статич. электризации, полимеризации и др. (тип I), а также вследствие ориентации диполей в полярных полимерах при механич. деформировании (тип II), в биополимерах (тип III), при поляризации в электрич. поле (тип IV, электреты), в результате спонтанной поляризации в таких высокополярных поликристаллич. полимерах (тип V), как, напр., ПВДФ, полиамиды, сегнетоэлектрич. стёкла и др.
В полимерах типа I и II пьезоэлектрич. коэф. d обычно невелики [d33 =(0,1-0,5)·10-12 Кл·Н -1]; в материалах типа III и IV они достигают более высоких значений [до d33 = (1- 2)·10-12 Кл·Н -1]; в материалах типа V -[до d33= 40·10-12 Кл·Н -1].
Среди пьезокомпозитов наиб. распространены материалы на основе порошка титаната свинца, распределённого в полимере, из-за значит. величины объёмного пьезомодуля (dV =30·10-12 Кл/Н) при достаточно простой технологии изготовления.
Лит.: Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966; Смажевская Е. Г., Фельдман Н. Б., Пьезоэлектрическая керамика, пер. с англ., М., 1971; Ультразвуковые преобразователи, пер. с англ., М., 1972; Яффе Б., Кук У., Яффе Г., Пьезоэлектрическая керамика, пер. с англ., М., 1974; Newnham R. Е. и др., Connectivity and piezoelectric - pyroelectric composites, "Mat. Res. Bull.", 1978, т. 13, № 5, p. 525; Powers J. M., An emerging hydrophone technology, "JEEE Trans. Eas con's", 1979, v. 27 CH; Tiny R. Y., Evaluation of new piezoelectrik composites for hydrophone, "Ferroelectrics", 1986, v. 67; Monroe D.-L., Blum J. В., Safari A., Sol-gel derived PbTiO3 - polymer piezoelectric composites, "Ferroelectrics. Lett. section", 1986, v. 5, p. 39. P. Е. Пасынков.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.