ПРЫЖКОВАЯ ПРОВОДИМОСТЬ

ПРЫЖКОВАЯ ПРОВОДИМОСТЬ
ПРЫЖКОВАЯ ПРОВОДИМОСТЬ

       
механизм электропроводности тв. тел, связанный с «перескоками» эл-нов, локализованных в пр-ве, из одного состояния в другое. П. п. наблюдается в неупорядоченных системах, у к-рых электронные состояния, локализованные в разных местах, имеют разную энергию. При прыжке эл-на из одного состояния в другое дефицит энергии покрывается за счёт энергии тепловых колебаний атомов. С этим связана характерная температурная зависимость электрич. сопротивления r. При умеренно низких темп-рах, когда доминируют «прыжки» между соседними состояниями, lnr=T-1. С понижением темп-ры длина прыжка возрастает, а дефицит энергии уменьшается. Это приводит к зависимости lnr=Tn, где n<1.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

ПРЫЖКОВАЯ ПРОВОДИМОСТЬ

- низкотемпературный механизм проводимости в полупроводниках, при к-ром перенос заряда осуществляется путём квантовых туннельных переходов ("прыжков") носителей заряда между разл. локализованными состояниями. Прыжки сопровождаются поглощением или излучением фононов. Наиб. изучена П. п. в слаболегированном кристаллич. полупроводнике, где происходит туннелирование между примесными электронными состояниями, а также в аморфных и стеклообразных полупроводниках, в к-рых носители заряда туннелируют между локализов. состояниями хвоста плотности состояний в квазизапре-щённой зоне.

Слаболегированным наз. кристаллич. полупроводник (для определённости м-типа), в к-ром концентрация доноров N д. мала по сравнению с концентрацией, при к-рой происходит переход металл - диэлектрик. В таких случаях перекрытие электронных оболочек соседних доноров мало. Поэтому каждый донор можно рассматривать как водородоподобный атом, внеш. электрон к-рого находится на расстоянии боровского радиуса a = 0,5·10-8 см и имеет энергию связи с ядром 4017-145.jpg ~ 13,6 эВ. В таких полупроводниках переход к П. п. происходит при низких темп-pax ( Т~ 10 К), когда вероятность термоактивации электрона донора в зону проводимости (для определённости рассматриваем полупроводник n-типа) становится много меньше вероятности его туннелирования на соседний незанятый донор. На графике зависимости логарифма проводимости d от 1/ Т этому переходу соответствует излом (энергия активации проводимости меняется от 4017-146.jpg - 4017-147.jpg до 4017-148.jpg , равной по порядку величины ширине примесной зоны 4017-149.jpg- дно зоны проводимости).

Т. к. электрон может прыгать только с занятого донора на свободный, необходимым условием П. п. является наличие свободных мест в примесной зоне, к-рое при низких темп-pax может быть обеспечено лишь компенсацией, т. е. введением акцепторной примеси, забирающей часть электронов с доноров.

Модель сетки сопротивлений. При термодинамич. равновесии частоты Г ij туннельных переходов электрона с донора i на донор j и обратно (Г ji) равны между собой и определяются соотношением

i4017-150.jpg

Здесь 4017-151.jpg Гц (частота порядка фононной), 4017-152.jpg - расстояние между донорами, а- радиус локализации волновой ф-ции электрона,


4017-153.jpg


Здесь 4017-154.jpg - энергии электрона на донорах, e - диэлектрич. проницаемость. Первое слагаемое в (1) связано с зависимостью от 4017-155.jpg матричного элемента электронно-фононного взаимодействия, второе - с малой вероятностью найти фонон с энергией больше kT, необходимый для перехода.

Внеш. электрич. поле Е нарушает баланс между Г ij и Г ji по двум причинам: 1) за счёт действия самого поля и за счёт изменения зарядового состояния соседних примесей меняются энергии доноров, а с ними и энергия фонона, необходимого для прыжка; 2) поле, перераспределяя электроны, меняет средние по времени числа заполнения доноров, что можно описать введением для каждого донора локального квазиуровня Ферми 4017-156.jpg В результате между донорами возникает электрич. ток, пропорциональный электрич. полю Е (линейное приближение):

4017-157.jpg

где 4017-158.jpg- электрохим. потенциал.

Можно показать, что

4017-159.jpg

Т. о., задача о вычислении прыжковой электропроводности полупроводника сводится к задаче о проводимости эквивалентной сетки сопротивлений (сетки Миллера и Абрахамса), узлы к-рой соответствуют локализованным состояниям (донорам), а сопротивления, включённые между узлами, задаются (4).

Важнейшим свойством сетки Миллера и Абрахамса является экспоненциально широкий разброс входящих в неё сопротивлений: для слаболегированного полупроводника значения только первого слагаемого в (1) для доноров, отстоящих на среднем и двух средних расстояниях, отличаются примерно в 10, а соответствующие сопротивления Rij в е10 (в 2,2·104) раз. Поэтому для вычисления проводимости всей сетки необходимо использовать методы протекания теории, к-рые дают выражение для проводимости:

4018-1.jpg

Здесь 4018-2.jpg- т. н. порог протекания по случайным узлам с критерием связности 4018-3.jpg при к-ром все пары доноров с 4018-4.jpg образуют бесконечный кластер, пронизывающий весь образец. Длина кластера

4018-5.jpg

где 4018-6.jpg- ср. длина прыжка, а 4018-7.jpg- критич. индекс, зависящий от размерности решётки:4018-8.jpg= 1,33, 4018-9.jpg= 0,88. Наиб. просто задача о вычислении 4018-10.jpgрешается для относительно высоких темп-р, когда для типичной пары ближайших доноров с 4018-11.jpg первое слагаемое в (1) много больше второго. В этом случае

4018-12.jpg

где 4018-13.jpg= 0,8654018-14.jpg- т. н. перколяционный радиус, а 4018-15.jpg=4018-16.jpg. Ср. энергия 4018-17.jpg определяется легированием и степенью компенсации образца К = N А/N Д(N А - концентрация акцепторов):

4018-18.jpg

Здесь F(K) - безразмерная ф-ция (табулирована).

При К: 0 величина F(K)= 0,99; при росте степени компенсации F(K )сначала убывает, проходит через минимум при К4018-19.jpg0,5 и возрастает как 4018-20.jpg при К: 1. При К4018-21.jpg1 ф-ла (7) справедлива при Т4018-22.jpgT кр 4018-23.jpg /kln(l/K), а при Т > Т кр проводимость зависит от Т лишь степенным образом.

Прыжковая проводимость с переменной длиной прыжка. При низких темп-pax, когда 4018-24.jpg/kT > 2r с/а, значит. вклад в П. п. дают не все локализов. состояния примесной зоны, а только их небольшая часть, попадающая в "оптимальную" энергетич. полоску 4018-25.jpg вокруг уровня Ферми. При уменьшении Т ширина оптим. полоски уменьшается (несмотря на рост x с), а расстояния между попавшими в неё локализов. состояниями растут; П. п. в этом режиме наз. П. п. с переменной длиной прыжка (VRH- variable range hopping). Если плотность состояний 4018-26.jpgпостоянна внутри полоски, то для x с справедлив закон Мотта:

4018-27.jpg

где d- размерность пространства, коэф. 4018-28.jpg= 13,8,

4018-29.jpg = 21,2.

В слаболегированных полупроводниках, где основной причиной разброса энергетич. уровней является кулоновский потенциал заряженных примесей, плотность состояний на уровне Ферми квадратично обращается в 0 (кулоновская щель). В этом случае

4018-30.jpg

где 4018-31.jpg= 6,2, 4018-32.jpg= 2,8.

Прыжковая проводимость в аморфных полупроводниках практически всегда носит характер VRH и наблюдается при значительно более высоких темп-рах, чем в слаболегированных кристаллич. полупроводниках, из-за большей плотности состояний. Вид зависимости s(Т )определяется структурой 4018-33.jpg и сильно зависит от материала и способа приготовления образца. У многих аморфных полупроводников наблюдается зависимость (10).

Неомические эффекты в П. п. наступают в электрич. полях, когда напряжение eEL, падающее на корреляционной длине бесконечного кластера, становится больше или порядка kT, н для критич. сопротивлений сетки Миллера и Абрахамса оказывается неверным выражение (3), полученное разложением по малому параметру eU/kT. При 4018-34.jpg и в области VRH электропроводность s(E)4018-35.jpgj(Е)/Е экспоненциально растёт с полем. Для E> Е с4018-36.jpgk T/eL в пределе

4018-37.jpg

4018-38.jpg

где С- численный коэф. Выражение (11) справедливо для x с > 30, а при соответствующих эксперименту значениях 4018-39.jpgзависимость ln[s(E)/s(0)] от E близка к линейной.

Прыжковая проводимость в переменном электрическом поле связана со смешением носителей лишь на конечные расстояния. Поэтому при частоте поля 4018-40.jpg проводимость определяется не бесконечным кластером, а переходами электронов между парами конечных кластеров, состоящих из доноров, связанных сопротивлениями с 4018-41.jpg. При больших частотах, когда разница x с - x(w) становится не мала но сравнению с xc, проводимость определяется поглощением энергии в изолиров. парах локализованных состояний. При относительно малых частотах и высоких темп-pax, когда 4018-42.jpg, основным механизмом поглощения являются релаксац. потери, а при 4018-43.jpg - резонансное (бесфононное) поглощение фотонов.

Лит.: Шкловский Б. И., Неомическая прыжковая проводимость, "ФТП", 1976, т. 10, в. 8, с. 1440; Шкловский Б. И., Эфрос А. Л., Электронные свойства легированных полупроводников, М., 1979; Нгуен Ван Лиен, Шкловский Б. И., Эфрос А. Л., Энергия активации прыжковой проводимости слабо легированных полупроводников, "ФТП", 1979, т. 13, с. 2192; Звягин И. П., Кинетические явления в неупорядоченных полупроводниках, М., 1984.

Е. И. Левин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "ПРЫЖКОВАЯ ПРОВОДИМОСТЬ" в других словарях:

  • ПРИМЕСНАЯ ПРОВОДИМОСТЬ — проводимость полупроводника, при к рой осн. вклад в перенос заряда дают электроны (дырки), термически возбуждённые в зону проводимости (валентную зону) из локализованных в запрещённой зоне донорных (акцепторных) состояний (проводимость n типа и р …   Физическая энциклопедия

  • ПОЛУПРОВОДНИКИ — широкий класс в в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106 104 Ом 1 см 1 и хороших диэлектриков s=10 10 10 12 Ом 1см 1 (электропроводность указана при комнатной темп ре).… …   Физическая энциклопедия

  • Полупроводники —         широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… …   Большая советская энциклопедия

  • ПОЛУПРОВОДНИКИ — в ва, характеризующиеся увеличением электрич. проводимости с ростом т ры. Хотя часто П. определяют как в ва с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (s ! 106 104 Ом 1 см 1) и для хороших диэлектриков (s ! 10 …   Химическая энциклопедия

  • ЭЛЕКТРОПРОВОДНОСТЬ — (электрическая проводимость, проводимость), способность тела пропускать электрич. ток под воздействием электрич. поля, а также физ. величина, количественно характеризующая эту способность. Проводники всегда содержат свободные (или квазисвободные) …   Физическая энциклопедия

  • Твёрдое тело —         одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости (См. Жидкость), Газов, плазмы (См. Плазма)) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около… …   Большая советская энциклопедия

  • МАГНИТНЫЕ ДИЭЛЕКТРИКИ — магнитоупорядоченные вещества (ферро , ферри и антиферромагнетики), обладающие очень низкой электропроводностью. Представителями их являются нек рые ферриты со структурой шпинели: MgFe2O4, , и др., имеющие при комнатной темп ре (T =300 К) уд.… …   Физическая энциклопедия

  • ОРГАНИЧЕСКИЕ ПОЛУПРОВОДНИКИ — твёрдые органич. в ва, к рые имеют (либо приобретают под влиянием внеш. воздействий) электронную или дырочную проводимость и положит. температурный коэфф. электропроводности (см. ПОЛУПРОВОДНИКИ). О. п. характеризуются наличием в молекулах системы …   Физическая энциклопедия

  • АМОРФНЫЕ ПОЛУПРОВОДНИКИ — аморфные в ва, обладающие св вами полупроводников. Различают ковалентные А. п. (Ge и Si, GaAs и др. в аморфном состоянии), халькогенидные стёкла (напр., As31 Ge30 Se21 Te18), оксидные стёкла (напр., V2O5 P2O5) и диэлектрич. плёнки (SiOx, Аl2O3,… …   Физическая энциклопедия

  • ПОЛЯРОН — электрон проводимости, движущийся в кристалле внутри потенциальной ямы. возникающей вследствие поляризации и деформации крист. решётки им самим. П. составная квазичастица (электрон + связанные с ним фононы), к рая может перемещаться по кристаллу… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»