ПОЛЯРИЗАЦИЯ СВЕТА

ПОЛЯРИЗАЦИЯ СВЕТА
ПОЛЯРИЗАЦИЯ СВЕТА

       
физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены голл. учёным X. Гюйгенсом в 1690 при опытах с кристаллами исл. шпата. Понятие «П. с.» было введено в оптику англ. учёным И. Ньютоном в 1704—06. Существ. значение для понимания П. с. имело её проявление в эффектах интерференции света и, в частности, тот факт, что два световых луча с взаимно перпендикулярными плоскостями поляризации непосредственно не интерферируют. П. с. нашла естеств. объяснение в эл.-магн. теории света англ. физика Дж. К. Максвелла (1865—73).
Поперечность эл.-магн. волн лишает волну осевой симметрии относительно направления распространения из-за наличия выделенных направлений (вектора Е — напряжённости электрич. поля и вектора Н — напряжённости магн. поля) в плоскости, перпендикулярной направлению распространения. Поскольку векторы Е и Н эл.-магн. волны перпендикулярны друг другу, для полного описания состояния поляризации светового пучка требуется знание поведения лишь одного из них. Обычно для этой цели выбирается вектор Е (см. ПЛОСКОСТЬ ПОЛЯРИЗАЦИИ).
Свет, испускаемый к.-л. отдельно взятым элементарным излучателем (атомом, молекулой), в каждом акте излучения всегда поляризован. Но макроскопич. источники света состоят из огромного числа таких частиц-излучателей; пространств. ориентации векторов Е и моменты актов испускания света отд. ч-цами в большинстве случаев распределены хаотически. Поэтому в общем излучении направление Е в каждый момент времени непредсказуемо. Подобное излучение наз. н е п о л я р и з о в а н н ы м, или естественным светом.
Свет наз. п о л н о с т ь ю п о л я р и з о в а н н ы м, если две взаимно перпендикулярные компоненты (проекции) вектора Е светового пучка совершают колебания с постоянной во времени разностью фаз. Обычно состояние П. с. изображается с помощью эллипса поляризации — проекции траектории конца вектора Е на плоскость, перпендикулярную лучу(рис.).
ПОЛЯРИЗАЦИЯ СВЕТА
Примеры разл. поляризаций светового луча при разл. разностях фаз между взаимно перпендикулярными компонентами Ех и Еу, Плоскость рисунков перпендикулярна направлению распространения света. а и д — линейные поляризации; в — круговая поляризация; б, г и е — эллиптич. поляризации. Рисунки соответствуют положит. разностям фаз 6 (опережению вертик. колебаний по сравнению с горизонтальными). l — длина волны света.
Проекционная картина полностью поляризованного света в общем случае имеет вид эллипса с правым или левым направлением вращения вектора Е во времени (рис., б, г, е). Такой свет наз. э л л и п т и ч е с к и п о л я р и з о в а н н ы м. Наибольший интерес представляют предельные случаи эллиптич. поляризации — л и н е й н а я, когда эллипс поляризации вырождается в отрезок прямой линии (рис., а, д), определяющий положение плоскости поляризации, и циркулярная (или круговая), когда эллипс поляризации представляет собой окружность (рис., в). В первом случае свет называется п л о с к о- или линейно п о л я р и з о в а н н ы м, а во втором — п р а в о- или л е в о-ц и р к у л я р н о п о л я р и з о в а н н ы м в зависимости от направления вращения вектора Е. Если фазовое соотношение между компонентами вектора Е изменяется за времена существенно меньшие времени измерения состояния поляризации, то свет проявляется как не полностью поляризованный. Состояние поляризации ч а с т и ч н о п о л я р и з о в а н н о г о с в е т а описывается параметром степени п о л я р и з а ц и и, отражающим степень преимуществ. фазового сдвига (фазовой корреляции) между компонентами вектора Е световой волны. Если этот фазовый сдвиг равен нулю, то свет обнаруживает преимуществ. плоскость колебаний вектора Е и наз. частично л и н е й н о п о л я р и з о в а н в ы м, если же этот фазовый сдвиг равен p/2, то свет обнаруживает преимуществ. направление вращения вектора Е и наз. ч а с т и ч н о ц и р к у л я р н о п о л я р и з о в а н н ы м. Естеств. свет не обнаруживает фазовой корреляции между компонентами вектора Е, разность фаз между ними непрерывно хаотически меняется. Параметр степени поляризации света, определяемый как отношение разности интенсивностей двух выделенных ортогональных поляризаций к их сумме, может меняться в диапазоне от 0 до 100%. Следует отметить, что свет, проявляющийся в одних случаях как неполяризованный, в других может оказаться полностью поляризованным с меняющимся во времени, по сечению пучка или по спектру состоянием поляризации.
В квантовой оптике, где эл.-магн. излучение рассматривается как поток фотонов, с П. с. связывают одинаковое спиновое состояние всех фотонов, образующих световой пучок. Так, фотоны с круговой поляризацией (правой или левой) обладают моментом, равным ±ћ. Эллиптически-поляризованвый свет описывается соответствующей суперпозицией этих состояний.
Особенности элементарного акта излучения, а также множество физ. процессов, нарушающих осевую симметрию светового пучка, приводят к тому, что свет всегда частично поляризован. Поляризованный свет может возникать при отражении света и преломлении света на границе раздела двух сред в результате различия оптич. хар-к границы для компонент, поляризованных параллельно и перпендикулярно плоскости падения (см. БРЮСТЕРА ЗАКОН). Свет может поляризоваться при прохождении через анизотропную среду (с естеств. или индуцир. оптической анизотропией) либо в результате различия коэфф. поглощения для разл. поляризаций (см. ДИХРОИЗМ)), либо вследствие двойного лучепреломления. П. с. возникает при рассеянии света, при оптич. возбуждении резонансного излучения в парах, жидкостях и тв. телах (см. ЛЮМИНЕСЦЕНЦИЯ). Обычно полностью поляризовано излучение лазеров. В сильных магн. и электрич. полях наблюдается полная поляризация компонент расщепления спектр. линий поглощения и люминесценции газообразных и конденсированных систем (см. МАГНИТООПТИКА, ЭЛЕКТРООПТИКА).
Нек-рые из этих эффектов лежат в основе простейших поляризационных приборов — поляризаторов, фазовых пластинок, анализаторов, компенсаторов оптических и др., с помощью к-рых осуществляется создание, преобразование и анализ состояния П. с. В наст. время разработаны эффективные методы расчёта изменения состояния П. с. при прохождении света через оптически анизотропные элементы. Изменение поляризац. состояния светового пучка вследствие прохождения через двупреломляющую среду используется для изучения оптич. анизотропии кристаллов (см. КРИСТАЛЛООПТИКА). При визуальных исследованиях оптически анизотропных сред широко используется эффект х р о м а т и ч е с к о й п о л я р и з а ц и и — окрашивание поляризованного пучка белого света после прохождения через анизотропный кристалл и анализатор. В хроматич. поляризации в наиболее эфф. форме проявляется интерференция поляризованных лучей.
Явление П. с. и особенности вз-ствия поляризованного света с в-вом нашли исключительно широкое применение в науч. исследованиях кристаллохим. и магн. структуры тв. тел, оптич. св-в кристаллов, природы состояний, ответственных за оптич. переходы, структуры биол. объектов, хар-ра поведения газообразных, жидких и тв. тел в полях анизотропных возмущений (электрич., магн., световом и пр.), а также для получения информации о труднодоступных объектах (в частности, в астрофизике). Поляризованный свет широко используется во мн. областях техники, напр. при необходимости плавной регулировки интенсивности светового пучка (см. МАЛЮСА ЗАКОН) при исследованиях напряжений в прозрачных средах (поляризационно-оптический метод исследования), для увеличения контраста и ликвидации световых бликов в фотографии, при создании светофильтров, модуляторов излучения (см. МОДУЛЯЦИЯ СВЕТА) и пр.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

ПОЛЯРИЗАЦИЯ СВЕТА

- физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены в 1690 X. Гюйгенсом (Ch. Huygens) при опытах с кристаллами исландского шпата. Понятие "П. с." введено в оптику в 1704-06 И. Ньютоном (I. Newton). Существ. значение для понимания П. с. имело её проявление в эффектах интерференции света и, в частности, тот факт, что два световых луча с взаимно перпендикулярными плоскостями поляризации непосредственно не интерферируют. П. с. нашла естеств. объяснение в эл.-магн. теории света, разработанной в 1865-73 Дж. К. Максвеллом (J. С. Maxwell), позднее - в квантовой электродинамике.

Поперечность эл.-магн. волны лишает её осевой симметрии относительно направления её распространения из-за наличия выделенных направлений (вектора Е - напряжённости электрич. поля, вектора H - напряжённости магн. поля) в плоскости, перпендикулярной направлению волнового вектора. Состояние П. с. принято связывать с типом движения вектора Е, направление к-рого в нерелятивистском приближении определяет направление силы, действующей на заряж. частицу в поле световой волны. Полностью поляризованная световая волна характеризуется полной скоррелирован-ностью ( когерентностью )колебаний взаимно ортогональных компонент вектора Е, т. е. постоянством их амплитуд и разности фаз. Все типы П. с. можно рассмотреть на примере монохроматич. эл.-магн. волны, компоненты вектора Е к-рой меняются во времени по гармонич. закону, а сам вектор Е совершает неизменно воспроизводимое периодич. движение. Монохроматич. волна, очевидно, всегда полностью поляризована. Графически состояние П. с. обычно изображают с помощью эллипса поляризации - проекции траектории конца вектора Е на плоскость, перпендикулярную лучу (рис. 1). Проекц. картина полностью поляризованного света в общем случае имеет вид эллипса с правым или левым направлением вращения вектора Е (рис. 1, б, г, е). Такой свет наз. эллиптически поляризованным. Наиб, интерес представляют предельные случаи эллиптич. поляризации - линейная, когда эллипс поляризации вырождается в отрезок прямой линии (рис. 1, а, д), определяющий положение (азимут q) плоскости поляризации, и циркулярная (или круговая), когда эллипс поляризации представляет собой окружность (рис. 1, в).


4007-120.jpg

Рис. 1. Примеры различных поляризационных состояний светового луча при различных разностях фаз между равными взаимно ортогональными компонентами

4007-121.jpg и 4007-122.jpg

В первом случае свет наз. плоскополяризованным или линейно поляризованным, а во втором - право- или левоциркулярно поляризованным в зависимости от направления обхода эллипса поляризации. П. с. принято называть правой, если вектор Е совершает вращение по часовой стрелке при наблюдении навстречу световому лучу.

Для количеств. описания характера поляризации полностью поляризованного света используют величину отношения длин малой ( В )и большой ( А )полуосей эллипса поляризации - эллиптичность е= В/А, приписывая ей знак, определяемый направлением вращения вектора Е. Правополяризованному свету приписывают положительную эллиптичность, а левополяризованному свету - отрицательную. Т. о., для всех типов П. с. эллиптичность е лежит в пределах -14007-123.jpg1. В нек-рых случаях удобно ввести также угол эллиптичности 4007-124.jpg определяемый соотношением

4007-125.jpg

При аналитич. описании П. с. обычно не рассматривают временные и пространственные изменения эл.-магн. волны. Наиб. простое аналитич. описание полностью эллиптически поляризованного света осуществляется с помощью вектора Джонса, представляющего собой столбец из двух величин, определяющих комплексные амплитуды ортогональных компонент волны в данной точке пространства:

4007-126.jpg

Здесь 4007-127.jpg и 4007-128.jpg- скалярные амплитуды гармонич. колебаний вектора Е вдоль осей x и у, а dx и dy их фазы. Точное представление поляризов. света 4007-130.jpgудобно при решении задач преобразования П. с., взаимодействующего с разл. недеполяризующими оптически анизотропными элементами (см. Джонса матричный метод). В тех случаях, когда конкретные величины амплитуд и фаз компонент волны не важны, сведения о фор-ме эллипса поляризации можно получить из комплексной величины, определяемой как отношение компонент вектора Джонса:

4007-131.jpg

При этом модуль 4007-132.jpg определяет отношение амплитуд компонент вектора Е, а аргумент - разность фаз этих компонент. Т. о., между разл. типами П. с. и точками комплексной плоскости существует однозначное взаимное соответствие, что позволяет рассматривать комплексную плоскость как пространство состояний П. с. Связь между комплексной величиной 4007-133.jpg и параметрами эллипса поляризации (азимутом 4007-134.jpg и углом эллиптичности 4007-135.jpg) даётся выражением

4007-136.jpg

На рис. 2 изображены состояния П. с., соответствующие разл. точкам комплексной плоскости 4007-137.jpg Состояния поляризации, характеризующиеся постоянной разностью фаз между 4007-138.jpg и 4007-139.jpg располагаются

4007-140.jpg

Рис. 2. Состояния поляризации, соответствующие различным точкам декартовой комплексной плоскости. Начало координат (4007-141.jpg= 0) и бесконечно удалённая точка (4007-142.jpg= со) соответствуют базисным состояниям горизонтальной и вертикальной линейной поляризации. Все состояния линейной поляризации с произвольным азимутом плоскости поляризации располагаются на вещественной оси 4007-143.jpg Точки 4007-144.jpg соответствуют правой и левой круговым поляризациям. на этой плоскости вдоль радиальных прямых, проходящих через начало координат, а состояния с одинаковым отношением амплитуд 4007-145.jpg- вдоль концентрич. окружностей с центром в начале координат.

Состояния П. с. можно представить не только в декартовой комплексной плоскости. В качестве базисных состояний вектора Джонса может использоваться любая пара взаимно ортогональных состояний поляризации, т. е. состояний с азимутами эллипсов поляризации 4007-146.jpg отличающимися на 4007-147.jpg и углами эллиптичности 4007-148.jpg равными по модулю, но имеющими противоположные знаки. В частности, используя состояния циркулярной поляризации в качестве базисных, можно установить соответствие между типами П. с. и точками комплексной плоскости на базе соотношения 4007-149.jpg4007-150.jpg где 4007-151.jpg- амплитуды право- и левоциркулярнополяризованных компонент световой волны, а 4007-152.jpg -разность фаз между ними. В этом случае начало координат и бесконечно удалённая точка комплексной плоскости соответствуют состояниям циркулярной поляризации, а точки, расположенные по окружности единичного радиуса с центром в начале координат,- состояниям линейной поляризации. Это представление особо интересно потому, что в 1892 А. Пуанкаре (Н. Poincare), используя стереографич. проекционное преобразование, установил однозначную связь между точками декартовой комплексной плоскости П. с. с циркулярными базисными состояниями и точками сфе- рич. поверхности состояний поляризации, названных впоследствии Пуанкаре сферой. Сфера Пуанкаре является наиб. компактным геом. представлением пространства П. с. и широко используется при решении задач поляризац. оптики.

Состояние П. с. немонохроматической световой волны, как правило, не может быть описано вектором Джонса или точкой на сфере Пуанкаре, т. к. компоненты вектора E немонохроматич. волны не полностью скор-релированы. Поэтому компоненты вектора Джонса оказываются зависящими от времени с характеристич. временем корреляции, равной примерно обратной ширине спектра (для световых полей широкого спектрального состава понятие вектора Джонса вообще теряет смысл). В результате разность фаз и отношение амплитуд компонент вектора E меняются за времена, обычно существенно более короткие, чем время измерения состояния поляризации, и свет является в этом случае частично поляризованным. Если к.-л. корреляция между значениями амплитуд и фаз компонент вектора E отсутствует, свет не обнаруживает анизотропии в плоскости колебаний вектора E и наз. неполяризованным или естественным.

Для аналитич. описания поляризац. состояния немонохроматич. световых волн используют параметры, отражающие усреднённые по времени интенсивности разл. поляризац. компонент световой волны. В 1852 Дж. Стоксом (J. Stokes) введён вектор (см. Стокса параметры), представляющий собой совокупность четырёх параметров 4007-153.jpg определяющих интенсивности соответственно всего пучка -4007-154.jpg части пучка преим. с горизонтальной поляризацией - 4007-155.jpg с поляризацией под углом 4007-156.jpgи с поляризацией правоциркулярной - 4007-157.jpg Благодаря простоте эксперим.

определения параметров Стокса произвольным образом поляризованного света и удобству аналитич. описания процессов преобразования поляризации света с помощью Мюллера матрицы вектор Стокса широко используется при решении задач поляризац. оптики. Для полностью поляризованной световой волны компоненты вектора Стокса связаны соотношением 4007-158.jpg Для частично поляризованного света вводится понятие степени поляризации4007-159.jpgопределяемой как отношение интенсивности полностью поляризованной компоненты волны к её полной интенсивности:

4007-160.jpg

Сфера единичного радиуса, соответствующая всем состояниям полностью поляризованного света (4007-161.jpg=1), совпадает со сферой Пуанкаре, а все точки внутри этой сферы соответствуют состояниям частичной поляризации.

Компоненты вектора Стокса связаны линейно с мат-рицей когерентности, компоненты к-рой в явной форме описывают корреляц. свойства компонент волны:

4007-162.jpg

Матрица когерентности в сочетании с матрицами Джонса служит для описания преобразования частично поляризованного света, распространяющегося через линейную недеполяризующую среду. Для описания распространения света через деполяризующие среды используются матрицы Мюллера.

В квантовой электродинамике с П. с. связывают спиновое состояние фотонов, образующих световой пучок. Так, право- или левоциркулярно поляризованный свет соответствует потоку фотонов с проекцией спина на направление распространения (спиральностью) + 1 или -1. Эллиптически поляризованному свету соответствует суперпозиция спиновых состояний эл.-магн. поля (см. Интерференция состояний). Каждый из циркулярно поляризованных фотонов несёт момент импульса, равный 4007-163.jpg что проявляется как в классических, так и в квантовых эффектах взаимодействия света с веществом (напр., в Садовского эффекте).

Особенности элементарного акта излучения, а также множество физ. процессов, нарушающих осевую симметрию светового пучка, приводят к тому, что свет всегда частично поляризован. П. с. может возникать при отражении и преломлении света на границе раздела двух изотропных сред с разл. показателями преломления в результате различия оптич. характеристик границы для компонент, поляризованных параллельно и перпендикулярно плоскости падения (см. Френеля формулы). Свет может поляризоваться либо при прохождении через анизотропную среду (с естеств. или индуцированной оптич. анизотропией), либо вследствие разных коэф. поглощения для разл. поляризаций (см. Дихроизм), либо вследствие двойного лучепреломления. П. с. возникает при рассеянии света, при оптич. возбуждении резонансного свечения в парах, жидкостях и твёрдых телах. Обычно полностью поляризовано излучение лазеров. В сильных электрич. и магн. полях наблюдается полная поляризация компонент расщепления спектральных линий поглощения и люминесценции газообразных и конденсиров. сред (см. Электрооптика, Магнитооптика).

Нек-рые из этих эффектов лежат в основе простейших поляризац. приборов - поляризаторов, фазовых пластинок, компенсаторов оптических, деполяризаторов и т. д., с помощью к-рых осуществляется создание, преобразование и анализ состояния П. с. Изменение состояния П. с. в результате прохождения через дву-преломляющую среду лежит в основе изучения оптич. анизотропии кристаллов. При визуальных исследованиях оптически анизотропных сред используется эффект хроматич. поляризации - окрашивания поляри-зов. пучка белого света в результате прохождения через анизотропный кристалл и анализатор.

Поляризов. свет служит не только как зонд оптич. анизотропии среды, но и как возмущение, инициирующее анизотропию. Большинство такого рода эффектов относится к нелинейной оптике. Вне зависимости от механизма эффекта характер оптически индуцируемой анизотропии определяется типом П. с. Так, циркуляр-но поляризованный свет способен инициировать в среде циркулярную анизотропию и, в частности, вызвать появление аксиального вектора намагниченности (см., напр., Оптическая ориентация), а линейно поляризованный свет индуцирует линейную анизотропию ( выстраивание, оптический Керра эффект).

П. с. и особенности взаимодействия поляризов. света с веществом широко применяются в исследованиях кристаллохим. и магн. структуры твёрдых тел, оптич. свойств кристаллов, природы состояний, ответственных за оптич. переходы, структуры биол. объектов, характера поведения газообразных, жидких p твёрдых тел в полях анизотропных возмущений, а также для получения информации о труднодоступных объектах (напр., в астрофизике). Поляризов. свет используется во мн. областях техники: для плавной регулировки интенсивности светового пучка, при исследовании напряжений в прозрачных средах ( поляризационно-оптиче-ский метод), при создании светофильтров, модуляторов излучения и пр.

Лит.: Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 4 изд., М., 1981; Феофи-л о в П. П., Поляризованная люминесценция атомов, молекул и кристаллов, М., 1959; Шерклифф У., Поляризованный свет, пер. с англ., М., 1965; Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Джеррард А., Беrч Д ж. М., Введение в матричную оптику, пер. с англ., М., 1978; Аззам Р., Башара Н., Эллипсометрия и поляризованный свет, пер. с англ., М., 1981. В. С. Запасский.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "ПОЛЯРИЗАЦИЯ СВЕТА" в других словарях:

  • Поляризация света — Поляризация  для электромагнитных волн это явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H. Когерентное электромагнитное излучение может иметь: Эллипс поляризации Линейную… …   Википедия

  • ПОЛЯРИЗАЦИЯ СВЕТА — ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные… …   Современная энциклопедия

  • Поляризация света — ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные… …   Иллюстрированный энциклопедический словарь

  • поляризация света — поляризация Свойство света, характеризующееся пространственно временной упорядоченностью ориентации магнитного и электрического векторов. Примечания 1. В зависимости от видов упорядоченности различают: линейную поляризацию, эллиптическую… …   Справочник технического переводчика

  • ПОЛЯРИЗАЦИЯ СВЕТА — (лат. от polus). Свойство лучей света, которые, будучи отраженными или преломленными, утрачивают способность отражаться или преломляться вновь, по известным направлениям. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… …   Словарь иностранных слов русского языка

  • ПОЛЯРИЗАЦИЯ СВЕТА — упорядоченность в ориентации векторов напряженностей электрических E и магнитных H полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда E сохраняет постоянное направление (плоскостью… …   Большой Энциклопедический словарь

  • поляризация [света] — Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа [Арефьев В.А., Лисовенко Л.А.… …   Справочник технического переводчика

  • поляризация света — упорядоченность в ориентации векторов напряжённостей электрических E и магнитных Н полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда Е сохраняет постоянное направление (плоскостью… …   Энциклопедический словарь

  • поляризация [света] — polarization поляризация [света]. Упорядоченность ориентации вектора электромагнитного поля световой волны в плоскости, перпендикулярной направлению распространения светового луча; принцип П. используется в конструкции поляризационного микроскопа …   Молекулярная биология и генетика. Толковый словарь.

  • поляризация света — šviesos poliarizacija statusas T sritis fizika atitikmenys: angl. polarization of light vok. Lichtpolarisation, f rus. поляризация света, f pranc. polarisation de la lumière, f …   Fizikos terminų žodynas


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»