- ПОГЛОЩЕНИЕ ЗВУКА
- ПОГЛОЩЕНИЕ ЗВУКА
-
явление необратимого перехода энергии звуковой волны в др. виды энергии и, в частности, в теплоту. Характеризуется коэфф. поглощения а, к-рый определяется как обратная величина расстояния, на к-ром амплитуда звуковой волны уменьшается в е=2,718 раз. Коэфф. a выражается в см-1, т. е. в неперах на 1 см или же в децибелах на 1 м (1 дБ/м=1,15•10-3 см-1). П. з. характеризуется также коэфф. потерь e=al/p (где l — длина волны звука) или добротностью Q=1/e. Величина al —«логарифмич. декремент затухания.При распространении звука в среде, обладающей вязкостью и теплопроводностью,где r — плотность среды, с — скорость звука в ней, w — круговая частота звуковой волны, т) и z — коэфф. сдвиговой и объёмной вязкости соответственно, c — коэфф. теплопроводности, Ср и Cv — теплоёмкости среды при пост. давлении и объёме. Если ни один из коэфф. h, z, c не зависит от частоты, что часто выполняется на практике, то a=w2. Величина a/f2, где f=w/2p, явл. xap-кой в-ва, определяющей П. з. Она, как правило, в жидкостях меньше, чем в газах, а в тв. телах для продольных волн меньше, чем в жидкостях. Напр., в воздухе при норм. давлении для частот от 100 до 400 кГц a/f2=3,0•10-13 см-1с2, а в воде в диапазоне частот от 0,1 до 1000 кГц a/f2=3,5•10-16 см-1с2.Если при прохождении звука нарушается равновесное состояние среды, П. з. оказывается значительно большим, чем определяемое по ф-ле (1). Такое П. з. наз. релаксационным (см. РЕЛАКСАЦИЯ АКУСТИЧЕСКАЯ) и описывается ф-лойгде т — время релаксации, с0 и с?— скорости звука при wt<-1 и при wt>1 соответственно. В этом случае П. з. сопровождается дисперсией звука.В газах теплопроводность и сдвиговая вязкость дают в П. з. вклад одного порядка величины. П. з. зависит от давления в газе, поскольку частота релаксации с понижением давления падает. В жидкостях П. з. в основном определяется вязкостью, а вклад теплопроводности пренебрежимо мал. В большинстве жидкостей для П. з. существенны релаксац. процессы. Частота релаксации в жидкостях, т. е. величина wр=1/t, как правило, очень велика и область релаксации оказывается лежащей в диапазоне высоких УЗ-вых и гиперзвуковых частот. Коэфф. П. з. обычно сильно зависит от темп-ры и от наличия примесей.П. з. в тв. телах определяется в основном внутр. трением и теплопроводностью среды, а на высоких частотах и при низких темп-pax — разл. процессами вз-ствия звука с внутр. возбуждениями в тв. теле (фононами, электронами проводимости, спиновыми волнами и др.). Величина П. з. в тв. теле зависит от кристаллич. состояния в-ва (в монокристаллах П. з. обычно меньше, чем в поликристаллах), от наличия дефектов (примесей, дислокаций и др.), от предварит. обработки материала. В металлах, подвергнутых предварит. механич. обработке (ковке, прокатке и т. п.), П. з. часто зависит от амплитуды звука. Во многих тв. телах при не очень высоких частотах a=w, поэтому величина добротности не зависит от частоты и может служить хар-кой потерь материала. Самое малое П. з. при комнатных темп-pax было обнаружено в нек-рых диэлектриках, напр. в топазе, берилле a=15 дБ/см при f=9 ГГц, железоиттриевом гранате a=25 дБ/см при той же частоте. В металлах и полупроводниках П. з. всегда больше, чем в диэлектриках, поскольку имеется дополнит. поглощение, связанное с вз-ствием звука с эл-нами проводимости. В полупроводниках это вз-ствие может приводить к «отрицат. поглощению», т. е. к усилению звука при условии, что скорость дрейфа носителей заряда превышает скорость распространения звуковой волны (подробнее (см. АКУСТОЭЛЕКТРОННОЕ ВЗАИМОДЕЙСТВИЕ)). С ростом темп-ры П. з., как правило, увеличивается. Наличие неоднородностей в среде приводит к увеличению П. з. В разл. пористых и волокнистых в-вах П. з. велико, что позволяет применять их для глушения звука и звукоизоляции. С увеличением интенсивности звука проявляется нелинейное П. з., к-рое зависит от амплитуды волны и обусловлено тем, что происходит передача энергии в высшие сильно поглощающиеся компоненты спектра волны.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- ПОГЛОЩЕНИЕ ЗВУКА
-
- явление необратимогоперехода энергии звуковой волны в др. виды энергии, в основном в теплоту. <П. з. обычно характеризуется коэф. П. з.определяемым как обратная величина того расстояния, на к-ром амплитудазвуковой волны спадает в е раз. Амплитуда плоской звуковой волны, <бегущей вдоль оси х, убывает с расстоянием как а интенсивность - как Амплитуда стоячей звуковой волны после выключения источника звука убываетсо временем как где с - скорость звука, t - время. Коэф. П. з. выражают вм -1, т. е. в неперах на метр или же в децибелах на метр (1 дБ/м= 0,115 Нп/м ). В гидроакустике часто пользуются единицей дБ/км. <П. з. можно характеризовать также коэф. потерь (где - длина звуковой волны) или добротностью Q= 1/Величина наз. логарифмич. декрементом затухания звука. При распространении звукав среде, обладающей сдвиговой и объёмной вязкостями и теплопроводностью, <коэф. П. з. для продольной волны равен
где - плотность среды,- круговая частота звуковой волны,и - коэф. <сдвиговой и объёмной вязкости,- коэф. теплопроводности, с Р и с V -теплоёмкости среды при пост. давлении и объёме соответственно. В областинизких частот, где ни один коэф.не зависит от частоты, для характеристики П. з. часто пользуются величиной к-рая в этом случае также не зависит от частоты и является параметром, <характеризующим свойства среды. Значение как правило, в жидкостях меньше, чем в газах, а в твёрдых телах меньше, <чем в жидкостях. Выражение (1) для применимотолько для звуковых волн малой амплитуды. П. з., обусловленное сдвиговойвязкостью и теплопроводностью, наз. классическим и характеризуется коэф.
Часть коэф. П. з., к-рая пропорц. объёмнойвязкости, связана с релаксац. процессами (см. Релаксация акустическая). Навысоких частотах коэф. объёмной вязкости начинает зависеть от частоты, <вследствие чего имеет частотную зависимость, отличающуюся от Коэф. П. з., связанный с релаксацией, имеет видгде - время релаксации, с0 - скорость распространения звукапри малых частотах - скорость звука при высоких частотах Полный коэф. поглощения
На низких частотах, т. е. при коэф. П. з. описывается ф-лой (1), где Величина при растётс увеличением частоты, а на частоте релаксации имеет максимум (рис. 1).
Рис. 1. Зависимость величины от f/p для СО 2 при температуре 21°С.
Величина постоянная при в области частот, близких к уменьшается с ростом частоты, а при стремится к нулю, причём стремится к пост. величине Релаксац. поглощение всегда сопровождается дисперсией звука.
Релаксация связана с разл. внутримолекулярнымии межмолекулярными процессами, происходящими в среде под действием УЗ, <поэтому анализ частотных и температурных зависимостей коэф. П. з. позволяетсудить об этих процессах. Частота релаксации для разных веществ может лежать как в ультразвуковой, так и в гиперзвуковойобласти; величина её зависит от темп-ры, давления, примесей др. веществи от др. факторов. Исследованием поглощения и скорости звука в зависимостиот частоты, темп-ры, давления, концентрации примесей и др. фпз. величинзанимается молекулярная акустика.П. з. в газе. Теплопроводность исдвиговая вязкость в газах дают вклад в П. з. одного порядка величины. <Вклад объёмной вязкости и релаксац. процессов значителен для многоатомныхгазов, тогда как в одноатомных газах релаксац. процессы отсутствуют и Данные о П. з. в нек-рых газах в УЗ-диапазоне частот приведены в табл.1.
Табл. 1. - Поглощение ультразвука вгазах
ГазЧастота f,кГцДавление р, атм.х 1011, м -1 с 2эксперименттеория (классическая)Воздух ..........132 - 400 11601,0 1,02,94-3,99 1,671,24Углекислый газ......304,40,9827, 11,30Водород .....598,41,03,580,17Окись азота598,90,951,831,56Кислород........598,90,991,681,49Аргон ...........42501,01,91,9Азот ............598,90,971,351,3Из табл. видно, что в ряде случаев измеренныезначения П. з. заметно превышают Это указывает на существенный вклад релаксац. процессов. П. з. в СО 2 довольно велико (рис. 1), напр., на частоте 50 кГц при комнатной темп-реи нормальном давлении величина 2х 10-3 м -1, т. е. волна затухает в е раз нарасстоянии 5 см.
В газах произведение П. з. на длину волны при заданной темп-ре зависит не только от частоты, но и от давления в газе р, т. <е. от отношения f/p, поскольку время релаксации в газах обратнопропорц. числу соударений молекул, а следовательно, давлению газа р.
В таких газах, как СО 2, CS2,CO и др., осн. вклад в П. з. даёт релаксац. процесс возбуждения колебат. <степеней свободы. В более сложных системах может иметь место как колебательная, <так и вращат. релаксация, причём обычно частоты релаксации этих процессовразличаются на неск. порядков.
Примеси посторонних газов заметно влияюткак на величину так и на П. з. в воздухе зависит от его влажности (рис. 2). В воздухе на частотахниже 1 МГц осн. вклад в П. з. даёт колебат. релаксация молекул О 2 и Н 2. В сильно разреженных газах, т. е. при больших значенияхотношений f/p, когда длина волны звука становится сравнимой с длинойсвободного пробега молекул, для описания П. з. нужно пользоваться кинетич. <теорией газов.Рис. 2. Зависимость ввоздухе от относительной влажности при разных частотах.
При распространении звука в помещениях, <сосудах и трубах на П. з. в среде накладывается поглощение в пограничномслое, к-рое пропорц. величине где -глубина проникновения вязкой волны. В малых объёмах поглощение в пограничномслое может оказаться преобладающим.
П. з. в жидкостях. П. з. в обычныхжидкостях в основном определяется вязкостью (как сдвиговой, так и объёмной).В большинстве жидкостей эксперим. значения коэф. П. з. существенно превышаютзначения, даваемые классич. теорией, что свидетельствует о большом вкладерелаксац. процессов. Релаксац. поглощение в жидкостях может быть обусловленоколебат. релаксацией, структурной релаксацией (ассоцииров. жидкости, поведениек-рых похоже на поведение воды), поворотно-изомерной релаксацией, диссоциациейрастворённых веществ в растворах электролитов и пр.
В жидкостях частота релаксации, как правило, <очень велика, поэтому область релаксации часто оказывается лежащей в диапазонегиперзвуковых частот. В этих случаях при релаксац. <процессы приводят к большим значениям и существенным отклонениям от классич. значений (табл.2), но качеств. характер частотной зависимости ~ f2 сохраняется до высоких УЗ-частот. Коэф. поглощенияв жидкостях обычно сильно зависит от темп-ры (рис. 3).Табл. 2. - Теоретические и экспериментальныезначения поглощения ультразвука в жидкостях
ЖидкостьЧастота f,МГцx 1015, м -1c2эксперименттеория (классическая)Вода ..............1-250238,5Ацетон .............6 - 70307,0Толуол .............1 - 75807,8Четырёххлористыйуглерод1 - 10050020,0Уксусная кислота...1,5-67,59000- 15817Глицерин (30°С)....22,327301600Этиловый спирт.....1 - 2205520Ртуть ..............21-99612-1310,3Аргон (-187,8°С) ...44,410,18,1Рис. 3. Зависимость оттемпературы для жидкости (гексатриола) со структурной релаксацией: 1- для 3 МГц; 2 - для 22 МГц.
Температурные кривые поглощения имеют максимум, <величина и положение к-рого зависят от частоты: с увеличением частоты максимумсдвигается в сторону больших темп-р и величина растёт, что свидетельствует об увеличении времени релаксации при понижениитемп-ры.
П. з. в растворах электролитов связанос хим. релаксацией и диссоциацией растворённых веществ. П. з. в морскойводе довольно велико, оно заметно превышает поглощение в пресной воде. <Это связано с двумя релаксац. процессами и зависит от солёности и темп-рыморской воды: на частотах от 10 до 100 кГц преобладает поглощение, обусловленноерелаксацией солей сульфата магния, а на частотах ниже 10 кГц вклад в поглощениедаёт релаксация солей борной к-ты. На низких частотах (0,1 - 3 кГц) длярасчёта морскойводы можно пользоваться приближённой эмпирич. ф-лойгде f - частота в кГц,- в дБ/км. В области частот 5 - 60 кГц для качеств. оценок поглощения иногдапользуются зависимостью где частота f в кГц, а в дБ/км. Измерение значения П. з. в море на НЧ часто заметно превышаютрасчётные (рис. 4). В жидкости с пузырьками газа П. з. имеет резонансныйхарактер. Добавка к коэф. П. з., обусловленная пузырьками газа, равна дБ/длина, где N - число пузырьков в единице объёма,- сечение рассеяния одиночного пузырька. Для пузырьков одного размера срадиусом а
где k - волновое число в жидкости,- величина, характеризующая потери в пузырьке газа. Резонансная частотапузырька с радиусом а равна
где для газа, Р0 и - давление и плотность жидкости. Отсюда видно, что когда частота звуковойволны совпадает с резонансной частотой пузырька, П. з. резко увеличивается.Рис. 4. Поглощение звука в морской воде:1- расчётное релаксационное поглощение; 2 - измеренные значения.
Полное поглощение в среде с пузырькамигаза представляет собой сумму коэф. поглощения для чистой жидкости и величины В высокополимерах, резинах и пластмассах П. з. сильно зависит от составаи структуры материала. В этих веществах определяющий вклад в П. з. вносятрелаксац. процессы, причём, как правило, имеется широкий спектр времёнрелаксации. Под действием УЗ-волны происходит сворачивание и разворачиваниеклубков молекул полимеров. Область релаксации для разных материалов можетлежать как в низкочастотном, так и в мегагерцевом диапазонах частот. Зависимость от темп-ры имеет одни или неск. максимумов, положение к-рых зависит какот материала, так и от частоты звука. С ростом частоты положение максимумовсдвигается в сторону больших темп-р. Для вулканизир. резины прп частоте10 МГц имеется максимум прп темп-ре 40°С, в полистироле - при темп-ре порядка - 10 °С. Величина коэф. П. з. врезине прп f = 10 МГц составляет неск. сотен дБ/см.
Величина П. з. в веществах биол. происхожденияимеет большой разброс, т. к. зависит от способа приготовления образца, <условий и метода измерения. Нек-рые данные приведены в табл. 3 и на рис.5. В биол. тканях часто бывает трудно отделить истинное П. з. от др. механизмов, <приводящих к уменьшению амплитуды звука.Табл. 3. - Поглощение ультразвука вбиологических средах
Биологическаясреда
см -1при f=1МГцпри f=ЗМГцКровь ...........0,023Жир ............0,044 - 0,09Кожа ...........0,14 - 0,66Хрящ ..........0,58Кость черепа.......1,5-2,2Лёгкое ...........3,5-5П. з. в твёрдых телах. В твёрдыхтелах П. з. различно для продольных и сдвиговых волн. Это связано как сразличием скорости звука для этих волн, так и с тем, что в П. з. для продольнойи сдвиговой волн могут давать вклад разл. механизмы. Для определения в твёрдом теле, как правило, ф-лой (1) не пользуются, т. к. в этом случаеП. з. может определяться механизмами, не укладывающимися в простую схему, <на основании к-рой выведена эта ф-ла. П. з. в твёрдых телах вызываетсяв основном внутренним трением и теплопроводностью среды, а на ВЧ и принизких темп-pax -разл. процессами взаимодействия УЗ- и гиперзвуковых волнс возбуждениями в твёрдом теле, такими, как тепловые колебания решётки(фононы), электроны, спиновые волны и пр. На поглощение сдвиговых волнв однородных твёрдых телах теплопроводность и др. объёмные эффекты не влияют, <т. к. сдвиговые волны но связаны с изменением объёма.
Рис. 5. Поглощение звука в тканях биологическогопроисхождения.
П. з. в твёрдом теле зависит от кристаллпч. <состояния вещества (в монокристаллах коэф. П. з. обычно меньше, чем в поликристаллах),от наличия дефектов и примесей, от предварит. обработки, к-рой был подвергнутматериал (для металлов - ковка, прокат, отжиг, закалка) и т. п. Внутр. <трение в кристаллах при комнатной темп-ре сильно зависит от наличия дислокаций. Поддействием звука в кристалле возникают переменные упругие напряжения, к-рыевозбуждают колебат. движения дислокаций. Взаимодействие этих колебанийс фононами решётки приводит к дополнит. П. з. Различаются три осн. механизмадислокац. П. з.: струнный, при к-ром дислокация рассматривается как струнадлиной l, закреплённая в двух точках и колеблющаяся под действиемзвука в вязкой среде (рис. 6, а); гнетерезисный, обусловленный отрывомдислокаций от их точек закрепления при больших амплитудах колебаний (рис.6, б, в); релаксационный, связанный с дефектами, возникающимив самом процессе деформации и проявляющийся гл. обр. в металлах с гранецентрир. <решёткой - меди, свинце, никеле и др.
Рис. 6. Положение дислокационной линиипод действием механических напряжений в звуковой волне: а - струнадлиной l колеблется в вязкой среде; б и в - отрывдислокаций от точек закрепления при больших амплитудах механических напряжений.
Дислокац. П. з. зависит от амплитуды звуковойволны. Изучение дислокац. поглощения позволяет исследовать дислокац. структурукристалла и её изменения при различных внеш. воздействиях - нагревании, <ковке, прокате, ионизирующих излучениях и др.
Во мн. твёрдых телах прп не очень высокихчастотах коэф. П. з. изменяется пропорц. частоте и поэтому величина добротности . отчастоты не зависит. В табл. 4 приведены значения е - 1/Q для нек-рыхматериалов.Табл. 4. - Поглощение ультразвука втвёрдых телах
МатериалДиапазон частот/Коэффициент потерь104 хТип волныПлавленый кварц5 - 19 МГц0,225сдвиговаяАлюминий поликристаллический.....3,5 - 4,5 МГц3, 1 - 7,5 МГц0,515 1,7сдвиговая продольнаяСвинец .........1,6 - 15 кГц280продольная1,0 - 8 кГц290сдвиговаяСтекло крон .....4 - 7,5 МГц2,38сдвиговаяНержавеющая сталь1X1 8Н9Т . . . . .18 - 25 кГц4,4продольнаяТитан ВТ1 ......18 - 25 кГц1,4продольнаяMедь М2 ........5,2продольнаяЛатунь Л59 ......2,4продольнаяАлюминиевый сплавАМГ .........3,0продольнаяРоль теплопроводности для продольных волнв однородном твёрдом теле идентична роли теплопроводности в жидкости игазе. Вклад теплопроводности составляет примерно половину от полного поглощенияв металлах, в к-рых велики коэф. теплового расширения и теплопроводности, <и всего лишь неск. процентов от полного поглощения в диэлектриках.
Другой механизм поглощения, также имеющийместо в большинстве веществ, связан с нелинейным взаимодействием звуковойволны и тепловых колебаний кристаллич. решётки, т. е. с взаимодействиемзвуковых и тепловых фононов. Такое П. з. поэтому часто наз. "решёточным"или "фононным". Оно проявляется на ВЧ в достаточно чистых и бездефектныхкристаллах. В зависимости от частоты и соотношения длины волны УЗ и длинысвободного пробега тепловых фононов в кристалле (определяемой темп-рой)рассматриваются разл. модели фононного поглощения. На сравнительно низкихчастотах действует т. н. механизм Ахиезера. Он заключается в том, что звуковаяволна, представляющая собой когерентный пучок фононов, нарушает равновесноераспределение тепловых фононов, и вызванное ею перераспределение энергиимежду фононами приводит к необратимому процессу диссипации энергии. Этотмеханизм имеет релаксац. характер, причём роль времени релаксации играетвремя жизни фонона, равное где l- длина свободного пробега фонона,- средняя скорость звука. В этом случае коэф. П. з.где - постоянная Грюнайзена, Т - абс. темп-ра. Этот механизм П. з. даётвклад в поглощение как продольных, так и сдвиговых волн. Он является доминирующимпри комнатных темп-pax, при к-рых выполняется условие В области гиперзвуковых частот (1010 - 1011 Гц) ипри низких темп-pax, близких темп-ре жидкого гелия, когда 1,П. з. является результатом трёхчастичного взаимодействия когерентных звуковыхфононов с тепловыми: взаимодействие когерентного и теплового фононов приводитк появлению третьего, также теплового, фонона н, следовательно, с учётомзаконов сохранения энергии и импульса - к уменьшению звуковой энергии, <т. е. к П. з. Этот механизм поглощения наз. механизмом Ландау - Румера.
Решёточное П. з. является осн. механизмомпоглощения в чистых бездислокац. кристаллах диэлектриков, в к-рых др. механизмыпроявляются слабо. Такие кристаллы могут обладать очень малым коэф. П. <з.; так, весьма малое поглощение при комнатной темп-ре было обнаруженов топазе, берилле, сапфире (табл. 5). Температурная зависимость коэф. П. <з. в диэлектриках имеет характерный вид, показанный на рис. 7 для кристаллаА12 О 3.Табл. 5. - Поглощение звука и некоторыхкристаллах
КристаллНаправление распространенияТип волныТ, Кf,ГГц
дБ/мКварцось Xпродольная3001500поперечная быстрая3001500поперечная медленная300180Сапфирось Zпродольная300150ось С300110030091,5- 103Рутилось Спродольная300115020130Железоиттрие-выйгранат[100]поперечная30013430092,5- 103Алюмоиттрне-выйгранат[100]продольная30012030092,5-3,0 х 103Бериллось Спродольная30091,5- 103Ниобат литияось Спродольная3001303009,42,7 х 103При темп-pax Т 10К коэф. П. з. не зависит от темп-ры; в интервале темп-р 20 - 100 К имеетсяобласть резкого возрастания коэф. П. з., где зависимость от Т для разных кристалл ографич. ориентации изменяется от ~ Т4 до ~ Т9;при темп-рах выше 100 К коэф. П. з. вновь почти не зависит от Т. Такойход можно объяснить соответствующей зависимостью для с V и в ф-ле (3).
Рис. 7. Зависимость в монокристалле А12 О 3 от темп-ры для продольных исдвиговых ультразвуковых волн с частотой 1 ГГц, распространяющихся вдольоси С.
П. з. в монокристаллах зависит от направленияраспространения волны относительно кристаллографии, осей и от наличия примесей. <Последние могут не только изменять величину коэф. П. з., но и влиять нахарактер его зависимости от Т. Напр., в кварце наличие примесейприводит к появлению пиков на зависимости Коэф. П. з. в синтетич. кварце при нек-рых темп-pax может на 2 - 3 порядкапревышать коэф. П. з. в натуральном кварце.
В металлах и полупроводниках кроме решёточногоП. з.. описанного выше, а также П. з., обусловленного теплопроводностьюи внутр. трением, имеется ещё специфич. поглощение, связанное с взаимодействиемУЗ с электронами проводпмостп (см. Акустоэлектронное взаимодействие).В металлах эти эффекты становятся заметными при темп-pax ниже примерно10 К. При переходе металла в сверхпроводящее состояние П. з. уменьшается, <а при наложении магн. поля, разрушающего сверхпроводимость, поглощениевозрастает. Взаимодействие акустич. волны с носителями тока в полупроводникепри наличии внеш. электрич. поля может привести к появлению отрицат. П. <з., т. е. к усилению звука.
В ферромагнетиках имеется дополнит. П. <з., обусловленное эффектом магнитострикции. Под действием упругойволны в них возникает локальная переменная намагниченность и связанныес ней потери энергии, в первую очередь на токи Фуко и магн. гистерезис. <Эти потери, вызывающие П. з., зависят от частоты. Зависимость магнитострикционныхи магн. характеристик вещества от состояния намагниченности также влияетна П. з. (рис. 8). В частности, при наложении внеш. магн. поля коэф. П. <з. уменьшается, а с ростом частоты растёт. В нек-рых веществах взаимодействиеакустич. волны с системой ядерных спинов или же с электронными спинамипарамагн. центров может приводить к резонансному П. з. (см. Акустическийпарамагнитный резонанс, Акустический ядерный магнитный рези-папе).Рис. 8. Зависимость различных частот в никеле от магнитной индукции В при распространениивдоль оси [110].
В поликристаллах как величина коэф. П. <з., так и его частотный ход зависят от соотношения между размерами кристаллита а,длиной тепловой волны и длиной волны звука При низких частотах где - коэф. температуропроводности)На ВЧ, т. е. прп снова а вобласти частот коэф. Аналогичныйхарактер имеет поглощение поперечных волн в тонких пластинках и стержнях, <где толщина пластинки играет ту же роль, что и размеры кристаллита в поликристаллах.
Прп фазовых переходах 2-го рода П. з. <аномально возрастает с приближением темп-ры к темп-ре перехода что связано с ростом термодинамич. флуктуации. С ростом интенсивности звукастановятся существенными нелинейные эффекты, к-рые приводят к зависимостикоэф. П. з. от амплитуды (см. Нелинейная акустика).
Методы измерения П. з. разнообразны изависят от вещества, в к-ром П. з. измеряется, от диапазона частот и величиныкозф. П. з. Во всех методах измерений важно выделить истинное поглощениеи отделить его от др. явлений, приводящих к уменьшению амплитуды звука, <таких, как сферич. расхождение, дмфракц. эффекты, рассеяние, а также потернна склейках и пр.Лит.: Ландау Л. Д., Лифшиц Е. М.,Механика сплошных сред, 2 изд., М., 1954; Алфрей Т., Механические свойствавысокополимеров, пер. с англ., М., 1952; Бергман Л., Ультразвук и его применениев науке и технике, пер. с нем., 2 изд., М., 1957; Неrzfе1d К., LitovitzТ.,Absorption and dispersion of ultrasonic waves, N. Y. - L., 1959; МихайловИ. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М.,1964; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. Л, <М., 1966, гл. 4; т. 2, ч. А, М., 1968; т. 3, ч. Б, М., 1968, гл. 5 и 6;т. 4, ч. Б, М., 1970, гл. 2; Колесников А. Е., Ультразвуковые измерения,2 изд., М., 1982; Труэлл Р., Эльбаум Ч., Чик Б., Ультразвуковые методыв физике твердого тела, пер. с англ., М., 1972; Wells P. N. Т., Biomedicalultrasonics, L. - [а. о.], 1977; Клей К., Медвин Г., Акустическая океанография, <пер. с англ., М., 1980; Красильников В. А., Крылов В. В., Введение в физическуюакустику, М., 1984.
А. Л. Полякова.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.