КРИСТАЛЛОФИЗИКА


КРИСТАЛЛОФИЗИКА
КРИСТАЛЛОФИЗИКА

       
изучает физ. св-ва кристаллов и др. анизотропных сред, влияние разл. внеш. воздействий на эти св-ва и реальную структуру кристаллов. В отношении мн. физ. св-в дискретность решётчатого строения кристалла не проявляется, и кристалл можно рассматривать как сплошную однородную анизотропную среду. Понятие однородности среды означает рассмотрение физ. явлений в объёмах, значительно превышающих объём элем. ячейки кристалла. Св-ва кристаллов зависят от направления (анизотропия), но одинаковы в направлениях, эквивалентных по симметрии (см. СИММЕТРИЯ КРИСТАЛЛОВ).
Для количеств. описания физ. св-в кристаллов в К. используется матем. аппарат матричного и тензорного исчисления и теории групп. Нек-рые св-ва кристаллов, напр. плотность, не зависят от направления и характеризуются скалярными величинами. Фнз. св-ва, характеризующие взаимосвязь между двумя векторными величинами (напр., между поляризацией P и электрич. полем Е, плотностью тока j и электрич. полем Е) или псевдовекторными величинами (напр., между магн. индукцией В и напряжённостью магн. поля Н), описываются тензорами второго ранга (напр., тензоры диэлектрической восприимчивости, электропроводности, магнитной проницаемости). Многие физические поля в кристаллах, напр. электрич. и магн. поля, поле механич. напряжений, сами явл. тензорными (векторными) полями. Связь между физ. полями и св-вами кристаллов или между их св-вами может описываться тензорами высших рангов, характеризующими такие св-ва, как пьезоэлектрич. эффект (см. ПЬЕЗОЭЛЕКТРИЧЕСТВО), электрострикция, магнитострикция, упругость, фотоупругость и т. д.
Диэлектрич., магн., упругие и др. св-ва кристаллов удобно представлять в виде т. н. указательных поверхностей. Описывающий такую поверхность радиус-вектор характеризует величину той или иной кристаллофиз. константы для данного направления (см. ИНДИКАТРИСА В ОПТИКЕ). Симметрия любого св-ва кристалла не может быть ниже симметрии его внеш. формы (п р и н ц и п Н е й м а н а). Иными словами, группа симметрии G1, описывающая любое физ. св-во кристалла, неизбежно включает элементы симметрии его точечной группы G, т. е. является её надгруппой: G1?G. Так, кристаллы, обладающие центром симметрии, не могут обладать полярными св-вами, т. е. такими, к-рые изменяются при изменении направления на обратное, напр. пироэлектрическими (см. ПИРОЭЛЕКТРИКИ). Наличие элементов симметрии определяет ориентацию гл. осей указательной поверхности и число компонент тензоров, описывающих то или иное физ. св-во. Так, в кристаллах кубич. сингонии все физические св-ва, описываемые тензорами второго ранга, не зависят от направления. Такие кристаллы изотропны относительно этих св-в (указательная поверхность — сфера). Те же св-ва в кристаллах ср. сингонии (тетрагональной, тригональной и гексагональной) характеризуются симметрией эллипсоида вращения, т. е. тензор 2-го ранга имеет две независимые компоненты. Одна из них описывает св-во вдоль гл. оси кристалла, а другая — в любом из направлений, перпендикулярных гл. оси. Для полного описания св-в таких кристаллов в любом направлении только эти две величины и необходимо измерить. В кристаллах низших сингонии физические св-ва, описываемые тензорами второго ранга, обладают симметрией трёхосного эллипсоида и характеризуются тремя гл. значениями (и ориентацией гл. осей этого тензора).
Физ. св-ва, описываемые тензорами более высокого ранга, характеризуются большим числом параметров. Так, упругие св-ва, описываемые тензором 4-го ранга, для кубич. кристалла характеризуются тремя, а для изотропного тела двумя независимыми величинами. Для описания упругих св-в триклинного кристалла необходимо определить 21 независимую компоненту тензора. Число независимых компонент тензоров высших рангов (5-го, 6-го и т. д.) для разных точечных групп симметрии определяется методами теории групп. Полное определение физ. св-в кристаллов и текстур осуществляется радиотехн., акустич., оптич. и др. методами.
В К. исследуются как явления, характерные только для анизотропных сред (двойное лучепреломление, вращение плоскости поляризации света, прямой и обратный пьезоэффекты, электрооптич., магнитооптич. и пьезооптич. эффекты, генерация оптич. гармоник и др.), так и явления, наблюдаемые и в изотропных средах (электропроводность, упругость и т. д.). Последние в кристаллах могут иметь особенности, обусловленные анизотропией.
К. явл. частью кристаллографии и примыкает к физике твёрдого тела и кристаллохимии; задачей К. явл. также исследование изменений св-в кристалла при изменении его структуры или сил вз-ствия в крист. решётке. Мн. задачи К. связаны с изменением симметрии кристаллов в разл. термодинамич. условиях. Кюри принцип позволяет предсказать изменение точечной и пространств. групп симметрии кристаллов, испытывающих фазовые переходы, напр., в ферромагн. и сегнетоэлектрич. состояния (см. ФЕРРОМАГНЕТИЗМ, СЕГНЕТОЭЛЕКТРИКИ).
В К. изучаются и различного рода дефекты крист. решётки (центры окраски, вакансии, дислокации, дефекты упаковки, границы крист. блоков, зёрен, домены и т. д.) и их влияние на физ. св-ва кристаллов (на пластичность, прочность, электропроводность, люминесценцию, механич. добротность и т. д.). К задачам К. относится также поиск новых перспективных крист. материалов.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

КРИСТАЛЛОФИЗИКА

- область кристаллографии, изучающая связь физ. свойств кристаллов и др. анизотропных материалов (жидких кристаллов, поликристаллич. агрегатов) с их симметрией, атомной и реальной структурой и условиями получения, а также изменения свойств под влиянием внеш. воздействий. К. использует симметрию кристаллов как метод изучения закономерностей изменения свойств объектов, общие закономерности, установленные физикой твёрдого тела и связывающие атомное строение и электронную структуру со свойствами кристаллов.

При изучении мн. макроскопич. свойств кристаллических и др. материалов их можно рассматривать как сплошные однородные среды, характеризуемые своей точечной или предельной группой симметрии. В то же время мн. свойства кристаллов определяются их кристаллич. структурой (напр., оптич. спектры) или даже симметрией локального окружения исследуемого фрагмента структуры (данные радиоспектроскопических методов).

Для количественного описания анизотропных физ. свойств кристаллов в К. используется аппарат тензорного и матричного исчислений. Различают два типа тензоров - материальные и полевые. Полевые тензоры характеризуют поля внеш. воздействий (темп-ры, электрич. поля, механич. напряжений и т. д.) и не связаны с симметрией исследуемой среды. С помощью материальных тензоров описывают свойства анизотропной среды.

Симметрия макроскопич. свойств кристалла определяется точечной группой его симметрии (G) и не может быть ниже последней (Неймана принцип). Иными словами, группа собств. симметрии G* материального тензора, описывающего то или иное физ. свойство такой среды (кристалла), включает элементы симметрии G, т. е. является надгруппой 2535-96.jpg . Собств. симметрия тензоров часто описывается предельными группами точечной симметрии. Нек-рые величины, характеризующие свойства кристаллов (плотность, теплоёмкость), являются скалярными. Взаимосвязь между двумя векторными полями (напр., между поляризацией Р и напряжённостью электрич. поля М, плотностью тока j и E )или псевдовекторными величинами (напр., между магн. индукцией В и напряжённостью магн. поля Н )описывается тензором 2-го ранга (тензоры диэлектрической восприимчивости, электропроводности, магнитной восприимчивости), в общем случае линейные и нелинейные связи между тензорными полями - материальными тензорами 3-го, 4-го, 5-го и др. высших рангов (см. Пьезоэлектричество, Электрострикция, Магнитострикция, Упругость, Фотоупругость). Для полной характеристики свойств анизотропной среды необходимо определить независимо все компоненты тензоров соответствующих рангов, а часто и зависимости каждой из компонент от внеш. факторов. К. разрабатывает рациональные способы таких измерений, к-рые, как правило, усложняются по мере понижения симметрии кристаллов (повышения числа независимых компонент тензоров соответствующего ранга). Так, в К. широко используется геом. представление об анизотропии физ. свойств (материальных тензоров) в виде т. н. указат. поверхностей (рис. 1); радиус-вектор такой поверхности характеризует величину рассматриваемого свойства в данном направлении. Симметрия анизотропной среды определяет не только симметрию и число независимых компонент тензоров, описывающих то или иное физ. свойство, но и ориентацию гл. осей указат. поверхностей. Число отличных от нуля компонент тензора для среды с симметрией G определяется методами теории представлений групп.

2535-98.jpg

Рис. 1. Сечение указательной поверхности вращения для угла поворота плоскости поляризации света (с длиной волны 2535-97.jpg=589,3 нм) в кристалле правого a-кварца, класс симметрии 32. Знак плюс означает правое вращение вдоль главной оси х3.


В К. исследуются как эффекты, характерные только для анизотропных сред (двойное лучепреломление и вращение плоскости поляризации эл.-магн. и акустич. воля, прямой и обратный пьезоэффекты н др.), так и явления, наблюдаемые и в изотропных средах (электропроводность, упругость и т. д.); в кристаллах эти явления приобретают особенности, обусловленные их анизотропией. Так, напр., в наиб. симметричном кубич. кристалле в плоскости (001) распространяются не две, как в изотропной среде, а три акустич. волны (рис. 2, а )и скорости двух сдвиговых волн совпадают, когда упругие волны распространяются вдоль осей 4-го порядка. Для того же кристалла в направлении пространственной диагонали [111] (рис. 2, б )имеет место явление внутр. конич. рефракции упругих волн.

2535-99.jpg

Рис. 2. Главные сечения указательной поверхности фазовых скоростей (в 105 см/с) упругих волн в кубическом кристалле КВг, класс симметрии m3m: а - в плоскости (100); б - в плоскости (110).


Задачей К. является также исследование свойств кристалла при фазовых переходах. Кюри принцип позволяет предсказать изменение точечной и пространственной групп симметрии кристаллов при фазовых переходах (напр., в ферромагн. и сегнетоэлектрич. состояния; см. Ферромагнетизм, Сегнетоэлектрики). При описании магнитных свойств кристаллов и кристаллов с модулированными структурами (см. Волны зарядовой плотности )в К. привлекается аппарат обобщённых групп симметрии.

В К. изучается и влияние реальной: структуры на физ. свойства кристаллов. К дефектам структуры чувствительны мн. свойства кристаллов: электропроводность, механич., оптич. и др. свойства. Важнейшие задачи К.- установление зависимостей изменения физ. свойств кристаллов от их состава, строения и реальной структуры, а также поиск способов управления свойствами материалов и создание новых структур (текстур и композитных материалов) с оптим. сочетанием ряда свойств для практич. применения.

Лит.: Най Дж., Физические свойства кристаллов и их описание при помощи тензоров и матриц, пор. с англ., 2 изд., М., 1967; Сиротин Ю. И., Шаскольская М. П., Основы кристаллофизики, 2 изд., М., 1979; Современная кристаллография, т. 4, М., 1981; см. также лит. к ст. Кристаллография, Симметрия кристаллов. К. С. Александров.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Смотреть что такое "КРИСТАЛЛОФИЗИКА" в других словарях:

  • кристаллофизика — кристаллофизика …   Орфографический словарь-справочник

  • КРИСТАЛЛОФИЗИКА — область физики твердого тела, в которой изучаются физические свойства кристаллов, их зависимость от атомно кристаллической структуры и изменение этих свойств под влиянием внешних воздействий …   Большой Энциклопедический словарь

  • Кристаллофизика — наука, изучающая физические свойства кристаллов и др. анизотропных сред. Исследует закономерности таких явлений как: двойное лучепреломление и вращение плоскости поляризации света, прямой и обратный пьезоэффекты, электрооптический эффект,… …   Википедия

  • кристаллофизика — сущ., кол во синонимов: 1 • кристаллография (5) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • кристаллофизика — Физич. кристаллография, изучает физич. св ва кристаллов и кристаллич. агрегатов и изменение этих св в под влиянием разных воздействий. В отношении многих физич. св в дискретность решетч. строения кристалла не проявл., и кристалл можно… …   Справочник технического переводчика

  • кристаллофизика — область физики твёрдого тела, в которой изучаются физические свойства кристаллов, их зависимость от атомно кристаллической структуры и изменение этих свойств под влиянием внешних воздействий. * * * КРИСТАЛЛОФИЗИКА КРИСТАЛЛОФИЗИКА, раздел… …   Энциклопедический словарь

  • кристаллофизика — kristalų fizika statusas T sritis chemija apibrėžtis Mokslas, tiriantis kristalų fizikines savybes. atitikmenys: angl. crystal physics rus. кристаллофизика …   Chemijos terminų aiškinamasis žodynas

  • Кристаллофизика —         физическая кристаллография, изучает физические свойства кристаллов (См. Кристаллы) и кристаллических агрегатов и изменение этих свойств под влиянием различных воздействий. В отношении многих физических свойств дискретность решётчатого… …   Большая советская энциклопедия

  • кристаллофизика — кристаллофизика, кристаллофизики, кристаллофизики, кристаллофизик, кристаллофизике, кристаллофизикам, кристаллофизику, кристаллофизики, кристаллофизикой, кристаллофизикою, кристаллофизиками, кристаллофизике, кристаллофизиках (Источник: «Полная… …   Формы слов

  • КРИСТАЛЛОФИЗИКА — раздел кристаллографии, посвящ. изучению физ. св в кристаллов и др. анизотропных сред и изменению этих св в под влиянием разл. внеш. воздействий (механич., тепловых и т. д.). Одно из осн. направлений К. изучение симметрии и анизотропии кристаллов …   Большой энциклопедический политехнический словарь

Книги

  • Кристаллофизика, Наталья Переломова. Сборник содержит более 400 задач и упражнений по основным разделам физики диэлектрических кристаллов, которые дают возможность уяснить физический смысл различныхкоэффициентов, характеризующих… Подробнее  Купить за 1408 руб электронная книга
  • Кристаллофизика, В. С. Петраков. Приводится систематическое изложение важнейших понятий и практических методов кристаллографии и кристаллохимии, начиная с классических методик определения символов атомных рядов и атомных… Подробнее  Купить за 900 руб электронная книга
  • Кристаллофизика, Сергеев Николай Александрович, Рябушкин Дмитрий Сергеевич. Рассмотрены основополагающие аспекты физики кристаллов как одной из ведущих дисциплин, изучающих свойства твердых тел. Представлен анализ симметрии кристаллов. Раскрыты основные понятия и… Подробнее  Купить за 570 грн (только Украина)
Другие книги по запросу «КРИСТАЛЛОФИЗИКА» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.