АЭРОДИНАМИЧЕСКИЙ НАГРЕВ

АЭРОДИНАМИЧЕСКИЙ НАГРЕВ
АЭРОДИНАМИЧЕСКИЙ НАГРЕВ

       
нагрев тел, движущихся с большой скоростью в воздухе или др. газе. А. н.— результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела. Если полёт совершается со сверхзвук. скоростью, торможение происходит прежде всего в ударной волне, возникающей перед телом. Дальнейшее торможение молекул воздуха происходит непосредственно у самой поверхности тела, в т. н. пограничном слое. При торможении потока молекул воздуха энергия их хаотического (теплового) движения возрастает, т. е. темп-pa газа вблизи поверхности движущегося тела повышается. Макс. темп-pa, до к-рой может нагреться газ в окрестности движущегося тела, близка к т. н. темп-ре торможения: Т0= Tн+v2/2cp, где Тн — темп-pa набегающего воздуха, v — скорость полёта тела, ср— уд. теплоёмкость газа при пост. давлении. Так, напр., при полёте сверхзвук. самолёта с утроенной скоростью звука (ок. 1 км/с) темп-pa торможения составляет ок. 400°С, а при входе косм. аппарата в атмосферу Земли с 1-й косм. скоростью (ок. 8 км/с) темп-ра торможения достигает 8000°С. Если в первом случае при достаточно длит. полёте темп-pa обшивки самолёта может быть близка к темп-ре торможения, то во втором случае поверхность косм. аппарата неминуемо начнёт разрушаться из-за неспособности материалов выдерживать столь высокие темп-ры.
Из областей газа с повыш. темп-рой теплота передаётся движущемуся телу, происходит А. н. Существуют две формы А. н.— конвективная и радиационная. Конвективный нагрев — следствие передачи теплоты из внешней, «горячей» части пограничного слоя к поверхности тела посредством мол. теплопроводности и переноса теплоты при перемещении макроскопич. элементов среды. Количественно конвективный тепловой поток qk определяют из соотношения: qk=a(Те-Tw), где Tе— равновесная темп-pa (предельная темп-pa, до к-рой могла бы нагреться поверхность тела, если бы не было отвода энергии), Tw— реальная темп-ра поверхности, а — коэфф. конвективного теплообмена, зависящий от скорости и высоты полёта, формы и размеров тела, а также от др. факторов. Равновесная темп-pa Tе близка к темп-ре торможения. Зависимость коэфф. a от перечисленных параметров определяется режимом течения в пограничном слое (ламинарный или турбулентный). В случае турбулентного течения конвективный нагрев становится интенсивнее. Это связано с тем, что, помимо мол. теплопроводности, существенную роль в переносе энергии начинают играть турбулентные пульсации скорости в пограничном слое.
С увеличением скорости полёта темп-ра воздуха за ударной волной и в пограничном слое возрастает, в результате чего происходит диссоциация и ионизация молекул. Образующиеся при этом атомы, ионы и эл-ны диффундируют в более холодную область — к поверхности тела. Там происходит обратная реакция (рекомбинация), идущая с выделением теплоты. Это даёт дополнит. вклад в конвективный А. н.
При достижении скорости полёта =5000 м/с темп-pa за ударной волной достигает значений, при к-рых газ начинает излучать энергию. Вследствие лучистого переноса энергии из областей с повыш. темп-рой к поверхности тела происходит радиац. нагрев. При этом наибольшую роль играет излучение в видимой и УФ областях спектра. При полёте в атмосфере Земли со скоростями ниже 1-й космической радиац. нагрев мал по сравнению с конвективным. При 2-й косм. скорости (11,2 км/с) их значения становятся близкими, а при скоростях полёта 13—15 км/с и выше, соответствующих возвращению объектов на Землю после полёта к др. планетам, осн. вклад вносит уже радиац. нагрев.
А. н. играет важную роль при возвращении в атмосферу Земли косм. аппаратов. Для борьбы с А. н. летат. аппараты оснащаются спец. системами теплозащиты. Существуют активные и пассивные методы теплозащиты. В активных методах газообразный или жидкий охладитель принудительно подаётся к защищаемой поверхности и берёт на себя осн. часть поступающей к поверхности теплоты. Газообразный охладитель как бы загораживает поверхность от воздействия высокотемпературной внеш. среды, а жидкий охладитель, образующий на поверхности защитную плёнку, поглощает подходящую к поверхности теплоту за счёт нагревания и испарения плёнки, а также последующего нагрева паров. В пассивных методах теплозащиты воздействие теплового потока принимает на себя спец. образом сконструированная внеш. оболочка или спец. покрытие, наносимое на осн. конструкцию. Радиационная теплозащита основана на применении в кач-ве внеш. оболочки материала, сохраняющего при высоких темп-pax достаточную механич. прочность. В этом случае почти весь тепловой поток, подходящий к поверхности такого материала, переизлучается в окружающее пр-во.
Наибольшее распространение в ракетно-косм. технике получила теплозащита с помощью разрушающихся покрытий, когда защищаемая конструкция покрывается слоем спец. материала, часть к-рого под действием теплового потока может разрушаться в результате процессов плавления, испарения, сублимации и хим. реакций. При этом осн. часть подходящей теплоты расходуется на реализацию разл. физ.-хим. превращений. Дополнительный заградит. эффект имеет место за счёт вдува во внеш. среду сравнительно холодных газообразных продуктов разрушения теплозащитного материала. Пример разрушающихся теплозащитных покрытий — стеклопластики и др. пластмассы на органич. и кремнийорганич. связующих. В кач-ве средства защиты летательных аппаратов от А. н. применяются также углерод-углеродные композиц. материалы.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.


.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "АЭРОДИНАМИЧЕСКИЙ НАГРЕВ" в других словарях:

  • Аэродинамический нагрев — нагрев тела, движущегося с большой скоростью в воздухе (газе). Заметный аэродинамический нагрев наблюдается при движении тела со сверхзвуковой скоростью (например, при движении головных частей межконтинентальных баллистических ракет) EdwART.… …   Морской словарь

  • аэродинамический нагрев — Нагревание обтекаемой газом поверхности тела, движущегося в газообразной среде с большой скоростью при наличии конвективного, а при гиперзвуковых скоростях и радиационного теплообмена с газовой средой в пограничном или ударном слое. [ГОСТ 26883… …   Справочник технического переводчика

  • аэродинамический нагрев — повышение температуры тела, движущегося с большой скоростью в воздухе или др. газе. Аэродинамический нагрев  результат торможения молекул газа вблизи поверхности тела. Так, при входе космического аппарата в атмосферу Земли со скоростью 7,9 км/с… …   Энциклопедический словарь

  • аэродинамический нагрев — aerodinaminis įšilimas statusas T sritis Energetika apibrėžtis Kūnų, judančių dujose (ore) dideliu greičiu, paviršiaus įšilimas. atitikmenys: angl. aerodynamical heating vok. aerodynamische Aufheizung, f rus. аэродинамический нагрев, m pranc.… …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Аэродинамический нагрев — 44а. Аэродинамический нагрев Нагревание обтекаемой газом поверхности тела, движущегося в газообразной среде с большой скоростью при наличии конвективного, а при гиперзвуковых скоростях и радиационного теплообмена с газовой средой в пограничном… …   Словарь-справочник терминов нормативно-технической документации

  • Аэродинамический нагрев конструкции ракеты — Нагрев поверхности ракеты во время ее движения в плотных слоях атмосферы с большой скоростью. А.н. – результат того, что налетающие на ракету молекулы воздуха тормозятся вблизи ее корпуса. При этом происходит переход кинетической энергии… …   Энциклопедия РВСН

  • Аэродинамический нагрев —         нагрев тел, движущихся с большой скоростью в воздухе или другом газе. А. н. результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела.          Если полет совершается со сверхзвуковой скоростью культур, торможение… …   Большая советская энциклопедия

  • АЭРОДИНАМИЧЕСКИЙ НАГРЕВ — нагрев поверхности ЛА при его движении в атмосфере. Происходит в рез те трения частиц воздуха, приводящего к выделению тепла. Возрастает с увеличением скорости полёта. В качестве защиты применяют абляционные покрытия (см. Абляция) и жаропроч.… …   Энциклопедия РВСН

  • АЭРОДИНАМИЧЕСКИЙ НАГРЕВ — повышение темп ры тела, движущегося с большой скоростью в воздухе или др. газе. А. и. результат торможения молекул газа вблизи поверхности тела. Так, при входе космич. аппарата в атмосферу Земли со скоростью 7,9 км/с темп pa воздуха у поверхности …   Естествознание. Энциклопедический словарь

  • Aérospatiale-BAC Concorde — Concorde Concorde в аэропор …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»