Дозиметрия ионизирующих излучений

Дозиметрия ионизирующих излучений
раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. — совокупность методов измерения этих величин. Важнейший признак дозиметрических величин — их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений (Ионизирующие излучения). Основной дозиметрической величиной является Доза ионизирующего излучения и ее модификации. Задача Д. и. и. — описание дозного поля, сформированного в живом организме в реальных условиях облучения.
Необходимость разработки Д. и. и. возникла вскоре после открытия Рентгеном (W.К. Röntgen) в 1895 г. излучения, названного его именем (см. Рентгена лучи (Рентгеновское излучение)). Интенсивное накопление данных по биологическому действию рентгеновского излучения, с одной стороны, открывало реальную перспективу его применения в медицине, а с другой — указывало на опасность неконтролируемого облучения живого организма. В результате встал вопрос о дозиметрическом обеспечении практического применения источников ионизирующих излучений. В начале 20 в. основными источниками излучения были радий и рентгеновские аппараты, и Д. и. и. сводилась фактически к дозиметрии фотонного ионизирующего излучения (рентгеновского и гамма-излучения). Затем по мере развития технических средств ядерной физики, создания и усовершенствования ускорителей заряженных частиц и особенно после пуска в 1942 г. первого ядерного реактора число источников и связанных с ними видов ионизирующих излучений существенно расширились. В соответствии с этим появились методы дозиметрии потоков заряженных частиц, нейтронов, высокоэнергетического тормозного излучения и др. Стал расти и список дозиметрических величин, соответствующих задачам многообразного практического применения ионизирующих излучений различной природы.
Физической основой Д. и. и. является преобразование энергии излучения в процессе его взаимодействия с атомами или их ядрами, электронами и молекулами облучаемой среды, в результате которого часть этой энергии поглощается веществом. Поглощенная энергия является первопричиной процессов, приводящих к наблюдаемым радиационно-индуцированным эффектам, и потому дозиметрические величины оказываются связанными с поглощенной энергией излучения.
Многообразие условий облучения и многофакторный характер его последствий не позволяют обходиться единственной дозиметрической величиной, приспосабливая ее к изменению этих условий и факторов. Необходим целый набор дозиметрических величин, из которых в зависимости от условий облучения и поставленной задачи выбирают наиболее адекватную меру радиационно-индуцированного эффекта. Примером такой величины является введенный Международной комиссией по радиологическим единицам (МКРЕ) для целей радиационной безопасности показатель эквивалентной дозы (см. Доза ионизирующего излучения) в точке радиационного поля — максимальная эквивалентная доза внутри тканеэквивалентного шара диаметром 30 см при совмещении центра этого шара с данной точкой. Практическое применение этого показателя встречает определенные трудности, ибо проблему адекватности дозиметрии пока нельзя считать полностью решенной.
При Д. и. и. используют как инструментальные, так и расчетные методы. Все дозиметрические приборы устроены по принципу регистрации радиационно-индуцированных эффектов в некотором модельном объекте — детекторе ионизирующего излучения. В ранний период становления Д. и. и, использовались фотографическое действие ионизирующих излучений, химические превращения и выделение тепла. По мере развития методов регистрации элементарных частиц развивались и методы Д. и. и. В современных условиях используется широкий спектр радиационно-индуцированных эффектов. К уже упомянутым можно добавить ионизационные эффекты в газах и конденсированных средах, изменение электрических свойств полупроводников, деструктивные повреждения твердых тел, люминесценцию, сцинтилляцию и др.
Особое место занимает биологическая дозиметрия использующая в качестве меры дозиметрической величины количественные радиобиологические эффекты, например хромосомные аберрации, изменение морфологического состава крови и другие показатели, однозначно связанные с Д. и. и. (см. Лучевая болезнь, Радиочувствительность).
Методы Д. и. и. можно классифицировать по разным признакам. Так, в зависимости от вида регистрируемого эффекта различают ионизационный, фотографический, химический, люминесцентный, калориметрический, сцинтилляционный методы, метод следов повреждения и др. При этом имеет место однозначная количественная связь между изменением физических или химических свойств детектора излучения и поглощенной энергией. В клинической дозиметрии распространены ионизационные методы, в которых детектором служат ионизационная камера, твердотельные люминесцентные кристаллы, полупроводники. Последние привлекают малыми размерами детектора.
В СССР выпускают стационарные, носимые и индивидуальные дозиметрические приборы. Стационарные дозиметры применяют в клинической практике, а носимые наиболее часто используют для оценки радиационной обстановки в целях радиационной защиты. Они имеют автономное питание и потому могут использоваться в любой обстановке, в т.ч. в полевых условиях. Индивидуальные дозиметры предназначены для оценки дозы, получаемой лицами, работающими в контакте с ионизирующим излучением. Они могут быть прямопоказывающими (рис. а, б) или состоять из носимых персоналом ионизационных или термолюминесцентных детекторов (в), показания которых, пропорциональные дозе излучения, определяются на специальном считывающем устройстве.
Клиническая дозиметрия — раздел Д. и. и., занимающийся измерениями и расчетами величин, характеризующих физические и биофизические эффекты облучения больных, получающих лучевую терапию (Лучевая терапия). Основная задача клинической дозиметрии состоит в количественном описании пространственного и временного распределения поглощенной энергии излучения в теле облучаемого больного, а также в поиске, обосновании и выборе индивидуально оптимизируемых условий его облучения.
Основными понятиями и величинами клинической дозиметрии являются поглощенная доза (см. Доза ионизирующих излучений (Доза ионизирующего излучения)), дозное поле, дозиметрический фантом, мишень. Дозное поле — это пространственное распределение поглощенной дозы (или ее мощности) в облучаемой части тела больного, тканеэквивалентной среде или дозиметрическом фантоме, моделирующем тело больного по физическим эффектам взаимодействия излучения с веществом, форме и размерам органов и тканей и их анатомическим взаимоотношениям. Информацию о дозном поле представляют в табличном, матричном виде, а также в виде кривых, соединяющих точки одинаковых значений (абсолютных или относительных) поглощенной дозы. Такие кривые называют изодозами, а их семейства — картами изодоз. За условную единицу (или 100%) можно принять поглощенную дозу в любой точке дозного поля, в частности максимальную поглощенную дозу, которая должна соответствовать подлежащей облучению мишени (т.е. области, охватывающей клинически выявленную опухоль и предполагаемую зону ее распространения).
Формирование дозного поля зависит от вида и источника излучения, от метода облучения (внешнего, внутреннего, статического, подвижного и др.), телосложения больного, а также от типа радиационного терапевтического аппарата. Поэтому в состав технической документации аппарата входят атлас дозных полей и рекомендации по его практическому использованию. При необходимости (для новых вариантов и сложных планов облучения) в лечебных учреждениях выполняют фантомные измерения дозных полей, пользуясь клиническими дозиметрами с малогабаритными ионизационными камерами или другими (полупроводниковыми, термолюминесцентными) детекторами, анализаторами дозного поля или изодозографами. Термолюминесцентные детекторы используют также для контроля поглощенных доз у больных.
Лучевой терапевт совместно с инженером-физиком ведет дозиметрическое планирование — выбирает метод облучения, оптимизирует условия облучения больного путем расчета конкурирующих вариантов дозных полей, определяет технологию облучения на конкретном аппарате, а также осуществляет контроль выполнения принятого плана и его динамическую корректировку в процессе лучевого лечения. В связи с развитием методов и средств вычислительной техники, появлением быстродействующих ЭВМ с большим объемом памяти и средств автоматизированного ввода в ЭВМ исходной графической и текстовой информации о больном происходит постепенный переход от ручного к компьютерному планированию облучения. При этом открываются возможности решения обратной задачи клинической дозиметрии — определения условий облучения по задаваемому врачом дозному полю.
В системе МЗ СССР имеется радиационная метрологическая служба, которая ведет проверку клинических дозиметров и дозиметрическую аттестацию радиационных аппаратов. В 1988 г. в СССР начат переход к метрологическому обеспечению лучевой терапии на основе непосредственных измерений поглощенной дозы в воде, прослеживаемых до государственного первичного эталона единицы ее мощности. Все это способствует повышению точности планирования и осуществления облучения.
Согласно современным международным требованиям, для повышения эффективности лучевой терапии в клинической дозиметрии нужно стремиться к дозированию облучения больного с погрешностью не более 5%, по поглощенной дозе в мишени, а измерения поглощенных доз вести с погрешностью не более 3%.
Библиогр.: Иванов В.И. Курс дозиметрии, М., 1988; Клеппер Л.Я. Формирование дозовых полей дистанциойными источниками излучения, М., 1986, библиогр.; Кронгауз А.Н., Ляпидевский В.К. и Фролова А.В. Физические основы клинической дозиметрии, М., 1969; Ратнер Т.Г. и Фадеева М.А. Техническое и дозиметрическое обеспечение дистанционной гамма-терапии, М., 1982, библиогр.
Индивидуальные дозиметры ионизирующих излучений: а и б — прямопоказывающие портативные дозиметры; в — индивидуальный термолюминесцентный детектор
Индивидуальные дозиметры ионизирующих излучений: а и б — прямопоказывающие портативные дозиметры; в — индивидуальный термолюминесцентный детектор.

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг.

Поможем написать курсовую

Полезное


Смотреть что такое "Дозиметрия ионизирующих излучений" в других словарях:

  • дозиметрия ионизирующих излучений — радиационная дозиметрия — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы радиационная дозиметрия EN radiation dos …   Справочник технического переводчика

  • Регистрация ионизирующих излучений — Основные методы регистрации ионизирующих излучений: ионизационный  регистрируются ионы, образованные излучением сцинтилляционный  регистрируются световые вспышки, возникающие в специальном материале калориметрический  регистрация… …   Википедия

  • ДОЗИМЕТРИЯ — (от греч. dosis доля, порция, приём и metreo измеряю), измерение, исследование и теор. расчёты тех характеристик ионизирующих излучений (и их вз ствия со средой), от к рых зависят радиац. эффекты в облучаемых объектах живой и неживой природы.… …   Физическая энциклопедия

  • ДОЗИМЕТРИЯ — совокупность методов определения (см.) ионизирующих излучений, измерения уровней радиоактивных загрязнений и воздействия радиоактивных излучений на организм человека с помощью (см.) …   Большая политехническая энциклопедия

  • ДОЗИМЕТРИЯ — (от Доза и ...метрия) область прикладной ядерной физики, в которой изучают физические величины, характеризующие действие ионизирующих излучений на различные объекты (см. Доза излучения) …   Большой Энциклопедический словарь

  • ДОЗИМЕТРИЯ — ионизирующих излучений, область прикладной ядерной физики, изучающая физические величины, характеризующие воздействие ионизирующих излучений на среду, в том числе на биологические объекты (организмы, ткани), а также методы и средства для… …   Ветеринарный энциклопедический словарь

  • дозиметрия — ДОЗИМЕТРИЯ, ДОЗИМЕТРИЯ, и; ж. [от греч. dosis доза и metreō измеряю] 1. Совокупность методов определения дозы радиоактивного излучения. 2. Область прикладной физики, в которой изучаются физические величины, характеризующие действие ионизирующих… …   Энциклопедический словарь

  • Дозиметрия —         область прикладной физики, в которой изучаются физические величины, характеризующие действие ионизирующих излучении (См. Ионизирующие излучения) на объекты живой и неживой природы, в частности дозы (См. Доза) излучения, а также методы и… …   Большая советская энциклопедия

  • дозиметрия — (см. ..метрия) совокупность методов определения дозы ионизирующих излучений, уровней радиоактивных загрязнений, воздействия радиоактивных излучений на организм человека и т. п.; дозиметрические измерения осуществляются дозиметрами. Новый словарь… …   Словарь иностранных слов русского языка

  • дозиметрия — I дозиме/трия = дозиметри/я; (от греч. dósis доза и metréō измеряю) 1) Совокупность методов определения дозы радиоактивного излучения. 2) Область прикладной физики, в которой изучаются физические величины, характеризующие действие ионизирующих… …   Словарь многих выражений

  • Дозиметрия — ж. Совокупность методов определения дозы ионизирующих излучений, уровня радиоактивных загрязнений, воздействия радиоактивных излучения на организм человека, животного и т.п. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»