УНАРНАЯ АЛГЕБРА

УНАРНАЯ АЛГЕБРА

уноид,- универсальная алгебра с семейством унарных операций
Важный пример У. а. дает групповой гомоморфизм произвольной группы Gв группу SA всех подстановок множества А. Такой гомоморфизм наз. действием группы . на А. Определяя унарную операцию для каждого элемента как подстановку из SA, отвечающую элементу gпри гомоморфизме получают У. а. в к-рой

Структуру У. а. несет на себе любой модуль над кольцом. Каждый детерминированный полуавтомат с множеством состояний . и входными символами a1, . . ., а п также можно рассматривать как У. а. <S, f1, . . ., fn>, в к-рой fi(s)=ais есть состояние, следующее за состоянием sв зависимости от входного символа ai.
У. а. с одной основной операцией наз. моноунарной, или унаром. Примером унара может служить алгебра Пеано <Р, f>, где Р={1,2,. . .} и f(n)=n+1.
Тождества произвольной У. а. могут быть лишь следующих типов:

Тождество II2 равносильно тождеству II, выполнимому лишь в одноэлементной алгебре. Многообразие У. а., определяемое лишь тождествами вида Il, I2 или I3, наз. регулярно определимым. Существует следующая связь между регулярно определимыми многообразиями У. а. и полугруппами (см. [1], [3], [4]).
Пусть V - регулярно определимое многообразие У. а., заданное множеством функциональных символов и множеством тождеств. Каждому символу fi сопоставляется элемент а i, а для каждого тождества вида I1 из выписывается определяющее соотношение


Пусть Р - полугруппа с порождающими и выписанными определяющими соотношениями, a Р1 - полугруппа . свнешне присоединенной единицей е. Для каждого тождества вида I2 из (если такие имеются) выписывают определяющее соотношение Полугруппу Р V, получаемую из Р 1 присоединением всех таких определяющих соотношений, и считают соответствующей многообразию V. Она во многом характеризует это многообразие. Если содержит лишь тождества вида Il, то можно ограничиться построением лишь полугруппы Р. Определяя в Р V унарные операции fi(x)=xai, получают У. а. к-рая является V-свободной алгеброй ранга 1. Группа всех автоморфизмов У. а. изоморфна группе обратимых элементов полугруппы Р V.

Лит.:[1] Мальцев А. И., Алгебраические системы, М., 1970; [2] Биркгоф Г., Барти Т., Современная прикладная алгебра, пер. с англ., М., 1976; [3] Смирнов Д. М., лАлгебра и логика


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "УНАРНАЯ АЛГЕБРА" в других словарях:

  • Алгебра логики — Не следует путать с булевой алгеброй. Алгебра логики (алгебра высказываний)  раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается (т. н. бинарная или двоичная логика, в… …   Википедия

  • Алгебра Кодда — Содержание 1 Реляционные операторы 1.1 Совместимость отношений …   Википедия

  • Проекция (реляционная алгебра) — У этого термина существуют и другие значения, см. Проекция. Проекция в реляционной алгебре  унарная операция, которая позволяет получить «вертикальное» подмножество данного отношения, или таблицы, то есть такое подмножество, которое… …   Википедия

  • Математическая логика — (теоретическая логика, символическая логика)  раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен.»[1] Согласно определению П. С. Порецкого, «математическая… …   Википедия

  • Булева логика — Не следует путать с булевой алгеброй. Алгебра логики раздел математической логики, в котором изучаются логические операции над высказываниями. Высказывания могут быть истинными и ложными. Содержание 1 Определение 2 Аксиомы 3 Логические операции …   Википедия

  • Двоичная система счисления — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей …   Википедия

  • ФОРМАЛЬНАЯ ОНТОЛОГИЯ — такой раздел (аспект) онтологии, в котором исследуются (отвлеченные от конкретного содержания) формы явлений, составляющих предмет онтологии, а также фундаментальные онтологические отношения между этими формами и базисные онтологические свойства… …   Современный философский словарь

  • Отрицание — У этого термина существуют и другие значения, см. Отрицание (значения). Отрицание в логике унарная операция над суждениями, результатом которой является суждение (в известном смысле) «противоположное» исходному. Обозначается знаком ¬ перед или… …   Википедия

  • Битовые операции — Не следует путать с булевой функцией. Битовая операция в программировании  некоторые операции над цепочками битов. В программировании, как правило, рассматриваются лишь некоторые виды этих операций: логические побитовые операции и… …   Википедия

  • Матлогика — Математическая логика (теоретическая логика, символическая логика)  раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен.»[1] Согласно определению П. С. Порецкого,… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»