СЛУЧАЙНОЕ БЛУЖДАНИЕ


СЛУЧАЙНОЕ БЛУЖДАНИЕ

- специального вида случайный процесс, к-рый можно интерпретировать как модель, описывающую перемещение частицы в нек-ром фазовом пространстве под воздействием какого-либо случайного механизма. Фазовым пространством обычно бывает d-мерное евклидово пространство или целочисленная решетка в нем. Случайные механизмы могут быть различными; чаще рассматривают С. б., порожденные суммированием независимых случайных величин или цепями Маркова. Точного общепринятого определения С. б. нет.
Траектории простейших С. б. в случае d=l описываются начальным положением S0=0и последовательностью сумм

где Xi независимы и имеют распределение Бернулли

Значение Sn можно интерпретировать как выигрыш одного из двух игроков после ппартий в игре, в к-рой этот игрок в каждой из партий выигрывает один рубль с вероятностью . и проигрывает его с вероятностью 1- р. Если игра ведется с помощью подбрасывания симметричной монеты, то следует положить р=1/2 (симметричное блуждание, см. Бернулли блуждание). При допущении, что начальный капитал 1-го игрока равен b, а начальный капитал 2-го игрока равен а, игра закончится, когда блуждающая частица (с координатами S1, S2, . . .) впервые коснется одного из уровней аили -b. В этот момент один из игроков разорится. Эта классич. задача о разорении, в к-рой барьеры в точках аи -b можно рассматривать как поглощающие.
В приложениях, связанных с массового обслуживания теорией, частица вблизи барьеров аи -b=0 может вести себя иначе: напр., если а=, b=0, то положение Zn+1 блуждающей частицы в момент n+1в соответствии с (1) описывается соотношением

и барьер в точке 0 можно наз. задерживающим. Существуют и другие возможности для поведения частицы вблизи барьеров.
Если а= то получают задачи для С. б. с одной границей. Если а=b= то получают неограниченное С. б. Изучение описанных С. б. происходит обычно с помощью аппарата дискретных цепей Маркова и, в частности, путем исследования соответствующих уравнений в конечных разностях. Пусть, напр., uk есть вероятность разорения 1-го игрока в задаче о разорении, если его капитал равен k, а суммарный капитал обоих игроков фиксирован и равен а+b. Тогда из формулы полной вероятности (по первому скачку) следует, что и k удовлетворяет уравнению

и граничным условиям u а=0, u-b= 1. Отсюда получают


Вторая из этих формул показывает, что даже лбезобидная


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "СЛУЧАЙНОЕ БЛУЖДАНИЕ" в других словарях:

  • Случайное блуждание — Теория случайных блужданий  теория, согласно которой изменения стоимости ценных бумаг колеблются случайным образом вокруг своей объективной цены, оппонирует теории технического анализа. Содержание 1 Одномерное дискретное случайное блуждание …   Википедия

  • случайное блуждание — atsitiktinis klajojimas statusas T sritis fizika atitikmenys: angl. random walk vok. zufällige Irrfahrt, f; zufällige Schrittfolge, f rus. случайное блуждание, n pranc. cheminement aléatoire, m; errance, f; marche aléatoire, f …   Fizikos terminų žodynas

  • БЕРНУЛЛИ БЛУЖДАНИЕ — случайное блуждание, порождаемое Бернулли испытаниями. На примере Б. б. можно пояснить нек рые основные черты более общих случайных блужданий. В частности, уже в этой простейшей схеме проявляются свойства случайности , парадоксальные с точки… …   Математическая энциклопедия

  • Задача о разорении игрока — Задача о разорении игрока  задача из области теории вероятностей. Подробно рассматривалась российским математиком А. Н. Ширяевым в монографии «Вероятность»[1] …   Википедия

  • ПОЗИЦИОННАЯ ИГРА — игра, имеющая характер развертывающегося в дискретном времени процесса на древовидно упорядоченном множестве (наз. также деревом). Конечной П. и. наз. система где 1) I множество игроков (|I| = n); 2) X конечное дерево, вершины к рого наз.… …   Математическая энциклопедия

  • ФЕЛЛЕРОВСКИЙ ПРОЦЕСС — однородный марковский процесс X(t), где Т аддитивная подполугруппа действительной оси R со значениями в топологич. пространстве . с топологией и борелевской алгеброй переходная функция Р(t, х, В), к рого обладает определенным свойством гладкости …   Математическая энциклопедия

  • Метод Монте-Карло — У этого термина существуют и другие значения, см. Монте Карло (значения). Метод Монте Карло (методы Монте Карло, ММК)  общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного)… …   Википедия

  • Монте-Карло (метод) — Метод Монте Карло (методы Монте Карло, ММК) общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные… …   Википедия

  • Монте-Карло метод — Метод Монте Карло (методы Монте Карло, ММК) общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные… …   Википедия

  • Интегрированный временной ряд — Интегрированный временной ряд  нестационарный временной ряд, разности некоторого порядка от которого, являются стационарным временным рядом. Такие ряды также называют разностно стационарными (DS рядами, Difference Stationary). Примером… …   Википедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.