РИМАНОВА КРИВИЗНА


РИМАНОВА КРИВИЗНА

- мера отличия метрик риманова и евклидова пространств. Пусть М - точка риманова пространства, F - двумерная регулярная поверхность , проходящая через M, L- простой замкнутый контур на F, проходящий через М,s - площадь участка поверхности, ограниченного контуром L. Пусть произвольный вектор а i, касательный к поверхности F (т. е. линейно выражающийся через векторы ), перенесен параллельно по L. Тогда составляющая перенесенного вектора, касательная к F, окажется повернутой по отношению к а i на угол j (положительное направление отсчета углов должно совпадать с направлением обхода L). Если при стягивании Lв точку Мсуществует предел


то он наз. р и м а н о в о й к р и в и з н о й ( кривизной риманова пространства) в данной точке в направлении двумерной поверхности; Р. к. зависит не от поверхности, а лишь от ее направления в точке М, т. е. от направления двумерной плоскости касательного евклидова пространства, содержащего векторы

Р. к. Ксвязана с тензором кривизны формулой


где


причем параметры и, v выбраны так, что площадь параллелограмма, построенного на векторах , равна 1.

По материалам ст. Риманова геометрия в БСЭ-3.



Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "РИМАНОВА КРИВИЗНА" в других словарях:

  • Риманова кривизна — В дифференциальной геометрии тензор кривизны Римана представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае произвольных многообразий аффинной связности, без кручения или с кручением. Назван в честь… …   Википедия

  • Риманова геометрия —         многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка… …   Большая советская энциклопедия

  • КРИВИЗНА — количеств. характеристика, описывающая отклонение кривой, поверхности, риманова пространства и др. соответственно от прямой, плоскости, евклидова пространства и др. Обычно понятие К. вводится локально, т. е. в каждой точке. В декартовых… …   Физическая энциклопедия

  • РИМАНОВА ГЕОМЕТРИЯ — геометрия риманова пространства. Осн …   Физическая энциклопедия

  • кривизна — ы; ж. 1. к Кривой (1 зн.). К. потолка была заметна. 2. Матем. Величина, характеризующая степень отклонения кривой линии или поверхности от касательной прямой (касательной плоскости). К. поверхности. * * * кривизна величина, характеризующая… …   Энциклопедический словарь

  • КРИВИЗНА — англ. curvature; нем. Krummung. 1. Ряд количественных характеристик (численных, векторных, тензорных), описывающих отклонение свойств того или иного объекта (кривой, поверхности, риманова пространства и т. д.) от соответствующих объектов (прямая …   Энциклопедия социологии

  • КРИВИЗНА — собирательное название ряда количественных характеристик (численных, векторных, тензорных), описывающих отклонение свойств того или иного объекта (кривой, поверхности, риманова пространства и др.) от соответствующих объектов (прямая, плоскость,… …   Математическая энциклопедия

  • РИМАНОВА ГЕОМЕТРИЯ — теория риманова пространства. Р и м а н о в ы м п р о с т р а н с т в о м наз. n мерное связное дифференцируемое многообразие М п, на к ром задано дифференцируемое поле ковариантного, симметрического и положительно определенного тензора gранга 2 …   Математическая энциклопедия

  • Кривизна — В дифференциальной геометрии, кривизна собирательное название ряда количественных характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т.… …   Википедия

  • Кривизна Риччи — В дифференциальной геометрии тензор Риччи, названный в честь Риччи Курбастро, задаёт один из способов измерения кривизны многообразия, то есть степени отличия геометрии многообразия от геометрии плоского евклидова пространства. Тензор Риччи,… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.