ПОВТОРНЫЙ ИНТЕГРАЛ


ПОВТОРНЫЙ ИНТЕГРАЛ

интеграл, в к-ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида

(1)

Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к-рых заданы s-конечные меры mx и my, обладающие свойством полноты; множество ("сечение" множества А), измеримое относительно меры m х;. множество А у (проекция множества Ав пространство Y), измеримое относительно меры m у. Интегрирование по (у).производится по мере (mx, а по А у - по мере my. Интеграл (1) обозначают также


К П. и. могут быть сведены кратные интегралы. Пусть функция f(x, у), интегрируемая по мере на множестве , продолжена нулем на все пространство , тогда П. и.


и


существуют и равны между собой:

(2)

(см. Фубини теорема). В левом интеграле внешнее интегрирование фактически производится по множеству . Таким образом, в частности, для точек множества (у).измеримы относительно меры m х. По всему множеству А у брать этот интеграл, вообще говоря, нельзя, т. к. при измеримом относительно меры m множества Амножество А у может оказаться неизмеримым относительно меры my, так же, как и отдельные множества (у),, могут быть неизмеримы относительно меры m х.

Множество же всегда измеримо относительно меры my, если только множество Аизмеримо относительно меры m.

Сформулированные условия возможности перемены порядка интегрирования в П. и. являются лишь достаточными, но не необходимыми: иногда перемена порядка интегрирования в П. и. допустима, а соответствующий кратный интеграл не существует.

Напр., для функции при x2+y2>0 и f(0, 0) = 0 П. и.


а кратный интеграл


не существует. Однако если существует хотя бы один из интегралов

или

то функция f интегрируема на множестве и справедливо равенство (2).

Для П. и. в случае, когда внутренний интеграл является интегралом Стилтьеса, а внешний - интегралом Лебега, справедлива следующая теорема о перемене порядка интегрирования: пусть функция g(x, у). суммируема по уна [с, d]для всех значений хиз [ а, b]и является функцией ограниченной вариации по хна [ а, b]для почти всех значений . Пусть, далее, полная вариация функции g(x, у).но переменной хна [a, b]при всех указанных значениях уне превышает нек-рой неотрицательной и суммируемой на [с, d] функции. Тогда функция является функцией ограниченной вариации от переменной хна [а, b]и для любой непрерывной на [а, b]функции f(х).имеет место формула


Лит.:[1] Ильин В. А., Полняк Э. Г., Основы математического анализа, 2 изд., ч. 2, М., 1980; [2] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981; [3] Кудрявцев Л. Д., Курс математического анализа, т. 2, М., 1981; [4] Никольский С. М., Курс математического анализа, 2 изд., т. 2, М., 1975; [5] Смирнов В. И., Курс высшей математики, т. 5, М., 1959. Л. Д. Кудрявцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ПОВТОРНЫЙ ИНТЕГРАЛ" в других словарях:

  • Повторный интеграл —         понятие интегрального исчисления. Вычисление двойного интеграла                  (см. Кратный интеграл) от функции f (x, у) по области S, ограниченной прямыми х = а, х = b и кривыми y = φ1(x), у = φ2(х), при некоторых условиях… …   Большая советская энциклопедия

  • Кратный интеграл —         интеграл от функции, заданной в какой либо области на плоскости, в трёхмерном или n мерном пространстве. Среди К. и. различают двойные интегралы, тройные интегралы и т. д. n кратные интегралы.          Пусть функция f (x, y) задана в… …   Большая советская энциклопедия

  • КРАТНЫЙ ИНТЕГРАЛ — определенный интеграл от функции нескольких переменных. Имеются различные понятия К. и. (интеграл Римана, интеграл Лебега, интеграл Лебега Стилтьеса и др.). Кратный интеграл Римана вводится на основе Жордана меры Пусть Е измеримое по Жордану… …   Математическая энциклопедия

  • Анализ функций многих переменных — Эта статья или раздел  грубый перевод статьи на другом языке (см. Проверка переводов). Он мог быть сгенерирован программой переводчиком или сделан человеком со слабыми познаниями в языке оригинала. Вы можете помочь …   Википедия

  • Многомерное исчисление — (также известное как многовариантное исчисление) является расширением исчисления функций одной переменной в исчисление функций нескольких переменных: функции, которые дифференцируются и интегрируются, затрагивая несколько переменных, а не одну.… …   Википедия

  • ФУБИНИ ТЕОРЕМА — теорема, устанавливающая связь между кратным интегралом и повторным. Пусть и измеримые пространства с конечными полными мерами и определенными соответственно на алгебрах и Если функция f( х, у )интегрируема на произведении Xx. пространств Xи Yпо… …   Математическая энциклопедия

  • ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… …   Энциклопедия Кольера

  • Кольца Урана — Схема колец и орбит спутников Урана Кольца Урана  система колец, окружающих Уран. Она занимает промежуточное по сложности положение межд …   Википедия

  • 1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… …   Словарь-справочник терминов нормативно-технической документации


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.