НОРМАЛЬНОЕ РАССЛОЕНИЕ


НОРМАЛЬНОЕ РАССЛОЕНИЕ

подмногообразия - расслоение, состоящее из касательных векторов к объемлющему многообразию, нормальных к подмногообразию. Если X- риманово многообразие, Y - его (погруженное) подмногообразие, и - касательные расслоения над Xи Y, то Н. р. подмногообразия У есть подрасслоение в составленное векторамиортогональными

к :

С помощью Н. р. строятся, напр., трубчатые окрестности подмногообразий. Н. р. над Y, рассматриваемое с точностью до эквивалентности, не зависит от выбора римановой метрики на X, поскольку может быть определено без помощи метрики как фактор-расслоение . Несколько более общей является конструкция Н. р. произвольного погружения дифференцируемых многообразий:

Аналогично определяется Н. р. неособого алгебраич. подмногообразия Yв неособом алгебраич. многообразии или Н. р. аналитич. одмногообразия Y в аналитич. многообразии X;оно является алгебраическим (соответственно аналитическим) векторным расслоением над Y, ранг к-рого есть codim Y. Если, в частности, codim Y-1, то расслоение изоморфно ограничению на Y расслоения над X, определяемого дивизором Y.

В случае, когда Y - аналитич. одпространство аналитич. ространства (X, О X ), Н. р. подпространства Y иногда называют аналитич. семейство векторных пространств двойственное к конормальному пучку (см. Нормальный пучок). О приложениях Н. р. к вопросу о стягиваемости подмногообразий см. Исключительное аналитическое множество. Исключительное подмногообразие.

Лит.:[1] Итоги науки и техники. Алгебра. Топология. Геометрия, т. 15, М., 1977, с. 132-56; [2] Милнор Дж., Сташеф Дж., Характеристические классы, пер. с англ., М., 1979; [3] Рохлин В. А., Фукс Д. В., Начальный курс . топологии. Геометрические главы, М., 1977; [4] Xирш М., Дифференциальная топология, пер. с англ., М., 1979; [5] Шафаревич И. Р., Основы алгебраической геометрии, М., 1972.

А. Л. Онищик.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "НОРМАЛЬНОЕ РАССЛОЕНИЕ" в других словарях:

  • Нормальное расслоение — подмногообразия риманова многообразия  векторное расслоение, состоящее из касательных векторов к объемлющему многообразию, которые перпендикулярны к Слой этого расслоения в точке называется нормальным пространством в точке Свойства Пусть …   Википедия

  • ВЕКТОРНОЕ АНАЛИТИЧЕСКОЕ РАССЛОЕНИЕ — локально тривиальное аналитич. расслоение над аналитич. ространством, слои к рого обладают структурой n мерного векторного пространства над основным полем k(если иоле комплексных чисел, то аналитич. расслоение наз. также голоморфны м). Число пназ …   Математическая энциклопедия

  • Слоение — Слоение  геометрическая конструкция в топологии: говорят, что на многообразии задано слоение размерности , если многообразие «нарезано» (согласованным образом в окрестности каждой точки) на «слои» размерности . Наиболее изученными являются 1 …   Википедия

  • ИСКЛЮЧИТЕЛЬНОЕ АНАЛИТИЧЕСКОЕ МНОЖЕСТВО — аналитич. множество Ав комплексном пространстве X, допускающем такое аналитич. отображение f : что f(A ) = y точка комплексного пространства Y, а f : аналитич. изоморфизм. Модификация f наз. стягиванием множества Ав точку у. Задача о… …   Математическая энциклопедия

  • ОБОБЩЕННЫЕ ТЕОРИИ КОГОМОЛОГИИ — экстраординарные теории когомологий, класс специальных функторов из категории пар пространств в категорию градуированных абелевых групп. О. т. к. есть пара функтор из категории Рпар топологич. пространств в категорию GA градуированных абелевых… …   Математическая энциклопедия

  • ПОГРУЖЕННЫХ МНОГООБРАЗИЙ ГЕОМЕТРИЯ — теория, изучающая внешнюю геометрию и связь между внешней и внутренней . геометрией подмногообразий евклидова или риманова пространства. П. м. г. является обобщением классич. дифференциальной геометрии поверхностей в евклидовом пространстве .… …   Математическая энциклопедия

  • ОРИЕНТАЦИЯ — формализация и далеко идущее обобщение понятия направления обхода. Определяется О. нек рых специальных классов пространств ( многообразий, векторных расслоений, Пуанкаре комплексов и т. д.). Современный взгляд на О. дается в рамках обобщенных… …   Математическая энциклопедия

  • ИНДЕКСА ФОРМУЛЫ — соотношения между аналитич. и топологич. инвариантами операторов нек рого класса. Именно, И. ф. устанавливают связь между аналитич. индексом линейного оператора (L0, L1 топологич. векторные пространства), определяемым формулой и измеряющим таким… …   Математическая энциклопедия

  • ТОМА ПРОСТРАНСТВО — топологич. пространство, сопоставляемое векторному (или сферическому) расслоению. Пусть . векторное расслоение над клеточным пространством X. Пусть в нем выбрана риманова метрика и рассматривается ассоциированное с расслоение на замкнутые… …   Математическая энциклопедия

  • Трубчатая окрестность — Синим цветом нарисована кривая, зеленым линии, ей перпендикулярные, красным ее трубчатая окрестность. Трубчатая окрестность подмногообразия в многообразии …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.