НАИМЕНЬШИХ КВАДРАТОВ МЕТОД

НАИМЕНЬШИХ КВАДРАТОВ МЕТОД

- один из методов ошибок теории для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Н. к. м. применяется также для приближенного представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. Н. к. м. предложен К. Гауссом (С. Gauss, 1794-95) и А. Лежандром (A. Legendre, 1805-06). Строгое обоснование и установление границ содержательной применимости Н. к. м. даны А. А. Марковым и А. Н. Колмогоровым. В простейшем случае линейных связей (см. ниже) и наблюдений, не содержащих систематич. ошибок, а подверженных лишь случайным ошибкам, оценки неизвестных величин, полученные с помощью Н. к. м., являются линейными функциями от наблюденных значений. Эти оценки не имеют систематич. ошибок, т. е. являются несмещенными (см. Несмещенная оценка). Если случайные ошибки наблюдений независимы и подчиняются нормальному распределению, то Н. к. м. дает оценки неизвестных с наименьшей дисперсией, т. е. эти оценки являются эффективными (см. Статистическое оценивание). В этом смысле Н. к. м. является наилучшим среди всех остальных методов, позволяющих находить несмещенные оценки. Однако если распределение случайных ошибок существенно отличается от нормального, то Н. к. м. может и не быть наилучшим.

При обосновании Н. к. м. (по Гауссу) предполагается, что "убыток" от замены точного (неизвестного) значения нек-рой величины ее приближенным значением X, вычисленным по результатам наблюдений, пропорционален квадрату ошибки оптимальной оценкой считается такая лишенная систематич. ошибки величина X, для к-рой среднее значение "убытка" минимально. Именно это требование и составляет основу Н. к. м. В общем случае отыскание оптимальной в смысле Н. к. м. оценки X - задача весьма сложная, поэтому практически эту задачу сужают и в качестве Xвыбирают линейную функцию от результатов наблюдений, лишенную систематич. ошибки, и такую, для к-рой среднее значение убытка минимально в классе всех линейных функций. Если случайные ошибки наблюдений подчиняются нормальному распределению и оцениваемая величина mзависит от средних значений результатов наблюдений линейно (случай, весьма часто встречающийся в приложениях Н. к. м.), то решение этой задачи будет одновременно являться и решением общей задачи. При этом оптимальная оценка Xтакже подчиняется нормальному распределению со средним значением и, следовательно, плотность вероятности случайной величины X

достигает максимума в точке (это свойство и выражает точное содержание распространенного в теории ошибок утверждения: "оценка X, вычисленная согласно Н. к. м.,- наиболее вероятное значение неизвестного параметра ").

Случай одного неизвестного. Пусть для оценки значения неизвестной величины произведено пнезависимых наблюдений, давших результаты - случайные ошибки (по определению, принятому в классич. теории ошибок, случайные ошибки - независимые случайные величины с нулевым математич. ожиданием:; если же наз. систематическими ошибками). Согласно Н. к. м. в качестве оценки величины m. принимают такое X, для к-рого будет наименьшей сумма квадратов (отсюда и само название метода):

где

(коэффициент k>0 можно выбирать произвольно). Величину наз. весом, а -квадратичным отклонением измерения с номером . В частности, если все измерения равноточны, то и в этом случае можно положить если же каждое - арифметич. среднее из равноточных измерений, то полагают

Сумма будет наименьшей, если в качестве Xвыбрать взвешенное среднее:

Оценка величины лишена систематич. ошибки, имеет вес Ри дисперсию . В частности, если все измерения равноточны, то Y - арифметич. среднее результатов измерений:

При нек-рых общих предположениях можно показать, что если количество наблюдений пдостаточно велико, то распределение оценки У мало отличается от нормального с математич. ожиданием m и дисперсией .В этом случае абсолютная погрешность приближенного равенства меньше с вероятностью, близкой к значению интеграла

(напр., ).

Если веса измерений заданы, а множитель кдо наблюдений остается неопределенным, то этот множитель и дисперсия оценки могут быть оценены по формулам:

и

(обе оценки лишены систематич. ошибок).

В том практически важном случае, когда ошибки подчиняются нормальному распределению, можно найти точное значение вероятности, с к-рой абсолютная погрешность приближенного равенства окажется меньше (t- произвольное положительное число):

где постоянная выбрана таким образом, чтобы выполнялось условие ( Стьюдента распре деление с п-1 степенями свободы). При больших пформулу (2) можно заменить формулой (1). Однако применение формулы (1) при небольших ппривело бы к грубым ошибкам. Так, напр., согласно (1) значению I= 0,99 соответствует t=2,58; истинные значения t, определяемые при малых пкак решения соответствующих уравнений приведены в таблице:

Пример. Для определения массы нек-рого тела произведено 10 независимых равноточных взвешиваний, давших результаты Yi (в г):

(здесь ni - число случаев, в к-рых наблюдалась масса ). Так как все взвешивания равноточные, то следует положить и в качестве оценки для неизвестного веса выбрать величину . Задавая, напр.,по таблицам распределения Стьюдента с девятью степенями свободы можно найти, что и поэтому в качестве предельной абсолютной погрешности приближенного равенства следует принять величину

Таким образом,

Случай нескольких неизвестных (линейные связи). Пусть презультатов измерений связаны с тнеизвестными величинами независимыми линейными соотношениями

где - известные коэффициенты, а - независимые случайные ошибки измерений.

Требуется оценить неизвестные величины (эту задачу можно рассматривать как обобщение предыдущей, в к-рой

Так как то средние значения результатов измерений связаны с неизвестными величинами линейными уравнениями (линейные связи):

Следовательно, искомые величины представляют собой решение системы (4), уравнения к-рой предполагаются совместными. Точные значения измеряемых величин и случайные ошибки обычно неизвестны, поэтому вместо систем (3) и (4) принято записывать так наз. условные уравнения

Согласно Н. к. м. в качестве оценок для неизвестных применяют такие величины , для к-рых сумма квадратов отклонений

будет наименьшей (как и в предыдущем случае,- вес измерения,- величина, обратно пропорциональная дисперсии случайной ошибки ). Условные уравнения, как правило, несовместны, т. с. при любых значениях разности

не могут, вообще говоря, все обратиться в нуль. Н. к. м. предписывает в качестве оценок выбрать такие значения , к-рые минимизируют сумму S. В тех исключительных случаях, когда условные уравнения совместны и, значит, обладают решением, это решение совпадает с оценками, полученными согласно Н. к. м.

Сумма квадратов Sпредставляет собой квадратичный многочлен относительно переменных ; этот многочлен достигает минимума при таких значениях при к-рых обращаются в нуль все первые частные производные:

Отсюда следует, что оценки , полученные согласно Н. к. м., должны удовлетворять системе т. н. нормальных уравнений, к-рая в обозначениях, предложенных К. Гауссом, имеет вид

где

и

Оценки, получающиеся в результате решения системы нормальных уравнений, лишены систематич. ошибок

дисперсии величин равны

где d- определитель системы (5), а - минор, соответствующий диагональному элементу (иными словами,- вес оценки ). Если множитель пропорциональности (кназ. дисперсией на единицу веса) заранее неизвестен, то для его оценки, а также для оценки дисперсии служат формулы

(S- минимальное значение исходной суммы квадратов). При нек-рых общих предположениях можно показать, что если количество наблюдений пдостаточно велико, то абсолютная погрешность приближенного равенства меньше с вероятностью, близкой к значению интеграла (1). Если случайные ошибки наблюдений подчиняются нормальному распределению, то все отношения распределены по закону Стьюдента с п-то степенями свободы (точная оценка абсолютной погрешности приближенного равенства производится здесь с помощью интеграла (2) так же, как в случае одного неизвестного). Кроме того, минимальное значение суммы Sв вероятностном смысле не зависит от и потому приближенные значения дисперсий оценок не зависят от самих оценок

Один из наиболее типичных случаев применения Н. к. м.- "выравнивание" таких результатов наблюдений , для к-рых в уравнениях (3) где - известные функции нек-рого параметра t(если t- время, то - те моменты времени, в к-рые производились наблюдения). Особенно часто встречается в приложениях случай т. н. параболической интерполяции, когда - многочлены (напр., ); если а наблюдения равноточные, то для вычисления оценок можно воспользоваться таблицами ортогональных многочленов. Другой важный для приложений случай - т. н. гармоническая интерполяция, когда в качестве выбирают три-гонометрич. функции (напр., ).

Пример. Для оценки точности одного из методов химич. анализа этим методом определялась концентрация СаО в десяти эталонных пробах заранее известного состава. Результаты наблюдений указаны в таблице (г - номер эксперимента, t;- истинная концентрация СаО,- концентрация СаО, определенная в результате химич. анализа, - ошибка химич. анализа):

Если результаты химич. анализа не имеют систематич. ошибок, то Если же такие ошибки имеются, то в первом приближении их можно представить в виде:(наз. постоянной ошибкой, а - методической ошибкой) или, что то же самое,

где

Для отыскания оценок и достаточно оценить величины и . Условные уравнения в данном случае имеют вид

поэтому (согласно предположению о равноточности наблюдений все ). Так как то система нормальных уравнений записывается особенно просто:

где

Дисперсии компонент решения этой системы суть

где k - неизвестная дисперсия на единицу веса (в данном случае k- дисперсия любой из величин ). Так как в этом примере компоненты решения принимают значения Х 1= -0,35, и Х 2= - 0,00524, то

Если случайные ошибки наблюдений подчиняются нормальному распределению, то отношения j= 1, 2, распределены по закону Стьюдента. В частности, если результаты наблюдений лишены систематич. ошибок, то , и, значит, закону Стьюдента должны подчиняться отношения и . С помощью таблиц распределения Стьюдента с п-m=8 степенями свободы можно убедиться, что если действительно х 12=0, то с вероятностью 0,999 каждое из этих отношений не должно превосходить 5,04 и с вероятностью 0,95 не должно превосходить 2,31. В данном случае поэтому гипотезу отсутствия систематич. ошибок целесообразно отвергнуть; в то же время следует признать, что гипотеза об отсутствии ме-тодич. ошибки () не противоречит результатам наблюдений, т. к. . Таким образом, можно заключить, что для определения tпо результату наблюдения Тцелесообразно пользоваться приближенной формулой

Случай нескольких неизвестных (нелинейные связи). Пусть презультатов измерений связаны с mнеизвестными функциональной зависимостью где - независимые случайные ошибки, а функции (в общем случае нелинейные) дифференцируемы. Согласно Н. к. м. в качестве оценок для xj принимают такие величины , для к-рых сумма квадратов

будет наименьшей. Так как функции нелинейные, то решение нормальных уравнений в этом случае может представлять значительные трудности. Иногда нелинейные связи каким-либо преобразованием могут быть приведены к линейным.

Напр., при намагничивании железа напряженность магнитного поля H связана с магнитной индукцией Вэмпирич. формулой (коэффициенты и определяются по измеренным значениям при заданных ). Индукция В- нелинейная функция от и . Однако обратная величина индукции зависит от и Линейно. Применение Н. к. м. к исходному и преобразованному равенствам дает, вообще говоря, различные оценки для неизвестных и , но если дисперсия случайных ошибок измерения индукции значительно меньше измеряемых величин , то . Поэтому величинам следует приписать веса ; естественно ожидать, что при этих условиях различие оценок в нелинейном и линейном случаях будет практически несущественным.

В тех случаях, когда не удается тождественными преобразованиями заменить нелинейные уравнения линейными, пользуются другим способом линеаризации. Из заданных пуравнений отбирают какие-либо m уравнений, решение к-рых принимают за нулевое приближение для неизвестных xj. Если положить то систему условных уравнений можно записать в виде:

Разлагая правые части в ряд по степеням и ограничиваясь линейными членами, получают

где - значение функции и ее производных по при Эта система уравнений линейна, и поэтому для оценки неизвестных легко может быть применен Н. к. м. Оценив получают первое приближение для неизвестных Величины берут за исходное приближение, и всю операцию повторяют, пока с заданной точностью не совпадут два последовательных приближения. Если дисперсии ошибок уменьшаются, то процесс сходится.

Очень часто при малых оказывается вполне достаточным уже первое приближение: не имеет смысла требовать нахождения с точностью, значительно превышающей

Во многих практически важных случаях (и в частности, при оценке сложных нелинейных связей) количество неизвестных параметров бывает весьма большим, и поэтому реализация Н. к. м. оказывается эффективной лишь при использовании современной вычислительной техники.

Лит.:[1] Марков А. А., Исчисление вероятностей, 4 изд., М., 1924; [2] Колмогоров А. Н., "Успехи матем. наук", 1946, т. 1, в. 1, с. 57-70; [3] Линник Ю. В., Метод наименьших квадратов и . основы математико-статистической теории обработки наблюдений, 2 изд., М., 1962; [4] Налимов В. В., Применение математической статистики при анализе вещества, М., 1960; [5] Helmert F. R., Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, 3 Aufl., Lpz.- В., 1924.

Л. Н. Большее.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "НАИМЕНЬШИХ КВАДРАТОВ МЕТОД" в других словарях:

  • НАИМЕНЬШИХ КВАДРАТОВ МЕТОД — метод оценивания неизвестных параметров теоретич. моделей по косвенным измерениям при параметрич. анализе данных (см. Анализ данных).H. к. м. был предложен К. Гауссом (С. GauB, 1809) для задач геодезии и астрономии в след. формулировке. Пусть… …   Физическая энциклопедия

  • НАИМЕНЬШИХ КВАДРАТОВ МЕТОД — один из методов теории ошибок для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Применяется при обработке наблюдений …   Большой Энциклопедический словарь

  • Наименьших квадратов метод — * найменьшых квадратаў метад * method of least squares один из основных методов теории ошибок для оценки неизвестной величины по результатам измерений со случайными ошибками. Пусть сделано n независимых наблюдений x1,…,xn неизвестной величины а.… …   Генетика. Энциклопедический словарь

  • наименьших квадратов метод — один из методов теории ошибок для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Применяется при обработке наблюдений. * * * НАИМЕНЬШИХ КВАДРАТОВ МЕТОД НАИМЕНЬШИХ КВАДРАТОВ МЕТОД, один из методов теории ошибок… …   Энциклопедический словарь

  • Наименьших квадратов метод —         один из методов ошибок теории (См. Ошибок теория) для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Н. к. м. применяется также для приближённого представления заданной функции другими (более простыми)… …   Большая советская энциклопедия

  • НАИМЕНЬШИХ КВАДРАТОВ МЕТОД — один из методов ошибок теории, применяемый для оценки одной или неск. неизвестных величин по результатам измерений, содержащим случайные ошибки. Сущность Н. к. м. заключается в допущении, что убыток от замены точного (неизвестного) значения физ.… …   Большой энциклопедический политехнический словарь

  • НАИМЕНЬШИХ КВАДРАТОВ МЕТОД — один из методов теории ошибок для оценки неизв. величии но результатам измерений, содержащим случайные ошибки. Применяется при обработке наблюдений …   Естествознание. Энциклопедический словарь

  • Метод наименьших квадратов — метод статистической оценки функциональной зависимости путем установления таких ее параметров, при которых сумма квадратов отклонений опытных данных от этой зависимости является минимальной. Источник: ГОСТ 20522 96: Грунты. Методы статистической… …   Словарь-справочник терминов нормативно-технической документации

  • Метод наименьших квадратов — метод определения коэффициентов полиномиальной аппроксимирующей функции, основанный на минимизации суммы квадратов отклонений значений аппроксимирующей функции от исходных данных... Источник: АНАЛИЗ ПОВОЗРАСТНЫХ РИСКОВ СМЕРТНОСТИ НАСЕЛЕНИЯ.… …   Официальная терминология

  • МЕТОД НАИМЕНЬШИХ КВАДРАТОВ — метод оценки параметров по наблюденным данных причем оценки должны быть несмещенными (см. Оценка несмещенная) и Е(Т θ)2 минимально, где в параметр, Т его оценка, Е математическое ожидание. В качестве Т берут определенную функцию от… …   Геологическая энциклопедия

Книги

Другие книги по запросу «НАИМЕНЬШИХ КВАДРАТОВ МЕТОД» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»