- МАЛЫЙ ОБЪЕКТ
категории - понятие, выделяющее такие объекты категории, к-рым присущи свойства математич. структур с конечным числом образующих (конечномерных линейных пространств, конечно порожденных групп и т. д.). Пусть - категория с копроизведениями. Объект наз. малым, если для любого морфизма
где - вложения копроизведения, найдется конечное подмножество индексов 1, 2, ..., пи такой морфизм
что выполнено равенство
в к-ром морфизм а однозначно определяется равенствами Иногда дается более сильное определение, в к-ром не предполагается, что все множители копроизведения совпадают с U.
В многообразиях универсальных алгебр следующие условия равносильны: а) алгебра Аявляется М. о. категории; б) алгебра имеет конечное число образующих; в) основной ковариантный функтор Н A (Х)=Н( А, X).перестановочен с копределами (прямыми пределами) направленных семейств мономорфизмов. Свойство в) часто принимается за определение конечно порожденного объекта произвольной категории.
М. Ш. Цаленко.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.