КООРДИНАТЫ


КООРДИНАТЫ

- числа, величины, по к-рым находится (определяется) положение какого-либо элемента (точки) в некоторой совокупности (множестве М), например на плоскости поверхности, в пространстве, на многообразии. В ряде разделов математики и физики К. именуются по-другому, напр. К. элемента (вектора) векторного пространства наз. его компонентами, К. в произведении множеств - проекции на один из его сомножителей, в теории относительности системы К.- это системы отсчета, и т. п. Часто встречается ситуация, когда ввести достаточно разумные и удобные К. глобально на всем множестве невозможно (напр., точкам сферы в отличие от плоскости нельзя взаимно однозначно и непрерывно сопоставить пары чисел), и тогда вводят понятие локальных координат. Таково, напр., положение в теории многообразий.

Совокупность К. организуется в систему координат (систему отнесения, систему референци и), или карту, причем К. взаимно однозначно соответствуют элементам множества М. В этом - основа метода координат, истоками к-рого принято считать работы П. Ферма (P. Fermat, 1636) и Р. Декарта (R. Descartes, 1637). Впрочем, еще Аполлоний Пергский (3-2 вв. до н. э.) определял ко-нич. сечения с помощью того, что сейчас [следуя Г. Лейбницу (G. Leibniz, 1694)] называют К., хотя числовых значений они не имели. Но широта и долгота в "Географии" Птолемея (2 в. н. э.) были уже числовыми К. В 14 в. Н. Орем (N. Oresme) пользовался К. на плоскости для построения графиков, называя долготой и широтой то, что теперь называется абсциссой и ординатой.

Попытки обойтись без введения К. извне, сохранить, так сказать, "чистоту" теории, себя не оправдали [напр., синтетические конструкции проективных координат, культивировавшиеся К. Штаудтом (Ch. Staudt, 1847), оказалось возможным заменить простыми алгебраич. эквивалентами, что привело к понятию проективной геометрии над телом]. Впрочем не пропал вкус и, так сказать, к внутреннему способу введения К. (в отличие от внешнего способа привнесения К. извне), основанному на оценке положения координируемого объекта относительно нек-рых, выбранных a priori стандартных подмножеств, напр. линий поверхностей и т. п. (называемых в этом случае координатными линиями, поверхностями и т. п.). Это в особенности относится к множествам, в определении к-рых участвуют числа (напр., мет-рич. и векторные пространства), т. е. к весьма обширному и практически важному классу математич. объектов, чем и объясняется их широкое распространение.

Среди систем К. точек (точечных К.) выделяют т. н. линейные координаты, в к-рых координатными линиями служат прямые. Таковы, напр., декартова прямоугольная система координат, треугольные К. (см. Тетраэдральные координаты), барицентрические координаты, проективные координаты. Системы К., для к-рых не все координатные линии прямые, наз. криволинейными координатами. Такие К. используются как на плоскости (напр., полярные координаты, эллиптические координаты, параболические координаты, биполярные координаты), так и на поверхностях ( геодезические координаты, изотермические координаты и др.). Многие специальные виды систем криволинейных К. вводятся при использовании сетей линий, отвечающих тем или иным условиям. Из них наиболее важный класс - ортогональные системы координат, в к-рых координатные линии пересекаются под прямым углом.

Различные виды К. на плоскости (или на поверхности) обобщаются на случай пространства. Напр., понятие полярных К. на плоскости приводит к понятию полярных К. в пространстве ( сферических координатн цилиндрических координат);понятие биполярных К. на плоскости - к понятиям тороидальных координат, бицилиндрических координат и биполярных К. в пространстве; понятие эллиптических К. на плоскости - к понятию эллипсоидальных координат в пространстве.

Иногда потребности удобства и наглядности приводят к отступлению от равенства количества чисел, являющихся К. точек множества и его размерностью. По тем же причинам допускается нарушение в отдельных точках взаимной однозначности координатного отображения (таковы, напр., полярные К.).

В тех случаях, когда изучаемое многообразие Мнегомеоморфно области евклидова пространства, бывает удобно использовать избыточные К., в к-рых число К. больше размерности М. Такие К., как правило,- однородные координаты.

Часто говорят о К. прямых, плоскостей и других геометрич. объектов, понимая под этим К. в каком-либо пространстве, точками к-рого являются прямые, плоскости и т. д. (см., напр., Грассмана многообразие). Равноправие точек и прямых в геометрии двух измерений и равноправие точек и плоскостей в геометрии трех измерений согласно двойственности принципу позволяют ввести К., спомощью к-рых могут быть определены положения прямых и плоскостей. Таковы, напр., тангенциальные координаты.

Метод К. стал полезным не только на пути алгоритмизации рассуждений (сведению их к вычислениям), но и для обнаружения новых фактов и связей (так, напр., непротиворечивость евклидовой геометрии посредством К. сводится к непротиворечивости арифметики). И хотя ряд разделов математики, напр. риманова геометрия, может быть изложен в "бескоординатном" виде, конкретные результаты чаще добываются методом К., а точнее, выбором удобных для данной задачи координатных систем (напр., выразительность ряда задач механики достигается именно в специальных К., в к-рых "разделяются" переменные).

М. И. Войцеховский, А. Б. Иванов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Синонимы:

Смотреть что такое "КООРДИНАТЫ" в других словарях:

  • Координаты — Координаты  величины, определяющие положение точки (тела) в пространстве (на плоскости, на прямой). Совокупность координат всех точек пространства является системой координат. В Викисловаре есть статья «координата» Понятие и слово… …   Википедия

  • Координаты —         (от лат. co приставка, означающая совместность, и ordinatus упорядоченный, определённый * a. coordinates; н. Koordinaten; ф. coordonnees; и. coordenadas) числа, величины, определяющие положение точки в пространстве. B геодезии, топографии …   Геологическая энциклопедия

  • Координаты — Координаты. На плоскости (слева) и в пространстве (справа). КООРДИНАТЫ (от латинского co совместно и ordinatus упорядоченный), числа, которые определяют положение точки на прямой, плоскости, поверхности, в пространстве. Координаты суть расстояния …   Иллюстрированный энциклопедический словарь

  • КООРДИНАТЫ — (от лат. co совместно и ordinatus упорядоченный определенный), числа, заданием которых определяется положение точки на плоскости, на поверхности или в пространстве. Прямоугольные (декартовы) координаты точки на плоскости суть снабженные знаками + …   Большой Энциклопедический словарь

  • КООРДИНАТЫ — (от латинского co совместно и ordinatus упорядоченный), числа, которые определяют положение точки на прямой, плоскости, поверхности, в пространстве. Координаты суть расстояния до выбранных каким либо способом координатных линий. Например,… …   Современная энциклопедия

  • Координаты — сферические. Если начало полярных координат взять вцентре сферы, то все точки сфер имеют одинаковый радиус вектор иостанутся изменяемыми только углы q и l. Обыкновенно вместо q беретсядругая координата j= 90 q, которая называется широтой, угол же …   Энциклопедия Брокгауза и Ефрона

  • КООРДИНАТЫ — (ср. век. лат., от лат. cum с, и ordinare приводить в порядок). В аналит. геометрии: такие величины, которые служат для определения положения какой нибудь точки. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… …   Словарь иностранных слов русского языка

  • координаты — положение, местоположение, позиция, месторасположение, местонахождение, расположение Словарь русских синонимов. координаты см. местонахождение 1 Словарь синонимов русского языка. Практический справочник. М.: Русс …   Словарь синонимов

  • координаты — КООРДИНАТЫ, координат, мн. Адрес, телефон. Он женился, координаты поменял …   Словарь русского арго

  • КООРДИНАТЫ — в геодезии величины, определяющие положение точки земной поверхности относительно поверхности земного эллипсоида: широта, долгота, высота. Определяются геодезическими методами …   Большой Энциклопедический словарь

  • КООРДИНАТЫ — (от лат. со – совместно и ordinatus – упорядоченный) осн. моменты, определяющие данность. В математике – величины, определяющие положение точки; часто наглядно они изображаются с помощью отрезков. Если отходящие от точки (начало координат) прямые …   Философская энциклопедия

Книги

Другие книги по запросу «КООРДИНАТЫ» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.