Д'АЛАМБЕРА УРАВНЕНИЕ это:

Д'АЛАМБЕРА УРАВНЕНИЕ

- дифференциальное уравнение вида где j и f- дифференцируемые функции; впервые исследовалось Ж. Д'Аламбером (J. D'Alembert, 1748). Известно также под назв. уравнения Лагранжа.

БСЭ-2.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "Д'АЛАМБЕРА УРАВНЕНИЕ" в других словарях:

  • Д'Аламбера уравнение — Уравнение Д’Аламбера  дифференциальное уравнение вида где и f  дифференциальные функции. Впервые исследовалось Ж. Д’Аламбером (J. D’Alembert, 1748). Известно также под названием уравнения Лагранжа …   Википедия

  • Уравнение Клейна — Гордона — Уравнение Клейна  Гордона (Уравнение Клейна  Гордона  Фока): или, кратко, используя вдобавок естественные единицы (где ): где …   Википедия

  • Уравнение Клейна — Уравнение Клейна  Гордона (Уравнение Клейна  Гордона  Фока, уравнение Клейна Фока): или, кратко, используя вдобавок естественные единицы (где ): где   оператор Д’Аламбера. явля …   Википедия

  • Уравнение Клейна-Гордона — Уравнение Клейна  Гордона (Уравнение Клейна  Гордона  Фока): или, кратко, используя вдобавок естественные единицы (где ): где   оператор Д’Аламбера. является релятивистской версией …   Википедия

  • Уравнение Клейна-Гордона-Фока — Уравнение Клейна  Гордона (Уравнение Клейна  Гордона  Фока): или, кратко, используя вдобавок естественные единицы (где ): где   оператор Д’Аламбера. является релятивистской версией …   Википедия

  • Уравнение Клейна — Гордона — Фока — Уравнение Клейна  Гордона (Уравнение Клейна  Гордона  Фока): или, кратко, используя вдобавок естественные единицы (где ): где   оператор Д’Аламбера. является релятивистской версией …   Википедия

  • Уравнение Д'Аламбера — Уравнение Д’Аламбера  дифференциальное уравнение вида где и f  дифференциальные функции. Впервые исследовалось Ж. Д’Аламбером (J. D’Alembert, 1748). Известно также под названием уравнения Лагранжа …   Википедия

  • Уравнение Д’Аламбера — Уравнение Д’Аламбера  дифференциальное уравнение вида где и   функции. Впервые исследовалось Ж. Д’Аламбером (J. D’Alembert, 1748). Известно также под названием уравнения Лагранжа …   Википедия

  • Уравнение колебаний струны — Волновое уравнение в математике  линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика,… …   Википедия

  • Уравнение колебания струны — Волновое уравнение в математике  линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика,… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»