ГИПЕРПОВЕРХНОСТЬ


ГИПЕРПОВЕРХНОСТЬ

- 1) Обобщение понятия обычной поверхности трехмерного пространства на случай n-мерного пространства. Размерность Г. на единицу меньше размерности объемлющего пространства.

2) Если - дифференцируемые многообразия, и определено погружение то - Г. в N. Здесь f - дифференцируемое отображение, дифференциал к-рого в любой точке является ннъективным отображением пространства М х , касательного к Мв точке х, в пространство Nf(x) , касательное к Nв точке . В. Т. Базылев.

3) Г. алгебраическая- подмногообразие алгебраич. многообразия, локально задаваемое одним уравнением. Г. а. в аффинном пространстве над полем kзадается глобально одним уравнением


Г. a. Wв проективном пространстве задается уравнением


где F - однородная форма от переменных. Степень тп этой формы наз. степенью (порядком) гиперповерхности. Замкнутая подсхема Wсхемы Vназ. гиперповерхностью, если соответствующий пучок идеалов является пучком главных идеалов. Для связных неособых алгебраич. многообразий это условие означает, что коразмерность W в V равна единице. Для каждой неособой Г. а. порядка m (обозначаемой часто через ) имеют место следующие факты:

канонич. класс равен - класс гиперплоского сечения W:

группы когомологий а


при фундаментальная группа (алгебраическая или топологическая, если ) ;

при группа Пикара и порождается классом гиперплоского сечения. И. В. Долгачев.

4) Г. аналитическая (Г. а.) - множество Sв комплексном евклидовом пространстве , к-рое в окрестности каждой своей точки задается уравнением где функция непрерывна по параметру и при каждом фиксированном tголоморфна по z в независящей от tокрестности причем для всех .

Другими словами, Г. а. есть множество в , к-рое локально является объединением непрерывного однопара-метрич. семейства комплексноаналитич. поверхностей комплексной коразмерности 1. Напр., если функция f голоморфна в области и grad в D, то множества и т. п. являются Г. а.

Дважды гладкая гиперповерхность в является Г. а. тогда и только тогда, когда ее форма Леви тождественно на Sравна нулю или когда Sлокально псевдовыпукла с обеих сторон. Е. <М. Чирка


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ГИПЕРПОВЕРХНОСТЬ" в других словарях:

  • гиперповерхность — гиперповерхность …   Орфографический словарь-справочник

  • ГИПЕРПОВЕРХНОСТЬ — обобщение понятия обычной поверхности 3 мерного пространства на случай многомерного пространства; простейшая гиперповерхность гиперплоскость …   Большой Энциклопедический словарь

  • гиперповерхность — сущ., кол во синонимов: 1 • поверхность (32) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Гиперповерхность — [hypersurface, form] “обобщение понятия обычной поверхности 3 мерного пространства на случай евклидова n мерного пространства. Обычно Г. задается одним уравнением F (x1, …, xn) = 0 между координатами, где F дифференцируемая функция”. (МЭС,… …   Экономико-математический словарь

  • гиперповерхность — Обобщение понятия обычной поверхности 3 мерного пространства на случай евклидова n мерного пространства. Обычно Г. задается одним уравнением F (x1, …xn)=0 между координатами, где F дифференцируемая функция. (МЭС, стр. 157). Примерами Г. могут… …   Справочник технического переводчика

  • Гиперповерхность — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Гиперповерх …   Википедия

  • гиперповерхность — обобщение понятия обычной поверхности 3 мерного пространства на случай многомерного пространства; простейшая гиперповерхность  гиперплоскость. * * * ГИПЕРПОВЕРХНОСТЬ ГИПЕРПОВЕРХНОСТЬ, обобщение понятия обычной поверхности 3 мерного пространства… …   Энциклопедический словарь

  • гиперповерхность — hiperpaviršius statusas T sritis fizika atitikmenys: angl. hypersurface vok. Hyperfläche, f rus. гиперповерхность, f pranc. hypersurface, f …   Fizikos terminų žodynas

  • Гиперповерхность —         обобщение понятия обычной поверхности 3 мерного пространства на случай n мерного пространства. Обычно Г. задаётся одним уравнением F (x1,..., xn) = 0 между координатами. Если в евклидовом n мерном пространстве Г. задаётся одним линейным… …   Большая советская энциклопедия

  • ГИПЕРПОВЕРХНОСТЬ — обобщение понятия обычной поверхности 3 мерного пространства на случай многомерного пространства; простейшая Г. гиперплоскость …   Естествознание. Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.