ГАУССА - БОННЕ ТЕОРЕМА

ГАУССА - БОННЕ ТЕОРЕМА

полная кривизна двумерного компактного риманова многообразия , замкнутого или с краем, и поворот его гладкого края (границы) связаны с эйлеровой характеристикой многообразия соотношением


здесь


где К- гауссова кривизна, a S - площадь;


где - геодезич. кривизна, а l - длина границы. Г.- В. т. справедлива и для многообразия с кусочно гладкой границей, в этом случае


где есть поворот границы в угловой точке. В частности, теорема справедлива на регулярных поверхностях в . К Г. -Б. т. близко подошел К. Гаусс (см. [1]), в отчетливой форме (для гомеоморфных кругу поверхностей) она опубликована О. Бонне (см. [2]).

Для некомпактного полного без края аналогом Г. - Б. т. является неравенство Кон-Фоссена (см. [3]):


Г.- Б. т. и приведенное неравенство верны также для выпуклых поверхностей и двумерных многообразий ограниченной кривизны.

Г.- Б. т. обобщается для четномерных компактных римановых многообразий , замкнутых или с краем:


где - объемы в и - нек-рый полином от компонент тензора кривизны , - нек-рый полином от компонент тензора кривизны и коэффициентов второй квадратичной формы (см. [4]). Г.- Б. т. распространена также на римановы полиэдры [5]. Другие обобщения Г. - Б. т. связаны с интегральными пред-_ ставлениями характеристич. классов через параметры римановой метрики (см. [4], [6], [7]).

Лит.:[1] Gauss С., Werke, Bd 8, Gott., 1900; [2] Bonnet О., "J. Ecole polytech.", 1948, t. 19, p. 1-146; [3] Кон-Фоссен С. Э., Некоторые вопросы дифференциальной геометрии в целом, М., 1959; [4] ШарафутдиновВ. А., "Сиб. матем. ж.", 1973 , т. 14, № 6, с. 1321-35; [5] А11еndоеrfer С. В., Wеil A., "Trans. Amer. Math. Soc.", 1943, v. 53, № 1, p. 101-29; [6] Ee11s J., "Trans. Amer. Math. Soc." 1959, v. 92, № 1, p. 142 - 53; [7] Понтрягин Л. С. "Изв. АН СССР. Сер. матем.", 1949, т. 13, № 2. Ю. Д. Бураго


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "ГАУССА - БОННЕ ТЕОРЕМА" в других словарях:

  • БОННЕ ТЕОРЕМА — 1) Б. т. о существовании и единственности поверхности с заданными первой п второй квадратичными формами [1]: пусть заданы две квадратичные формы: : первая из к рых положительно определенная и коэффициенты этих форм удовлетворяют уравнениям Гаусса …   Математическая энциклопедия

  • Формула Гаусса — Бонне — В дифференциальной геометрии формула Гаусса Бонне связывает эйлерову характеристику поверхности с её гауссовой кривизной и геодезической кривизной её границы. Пусть M компактное двумерное ориентированное риманово многообразие с границей .… …   Википедия

  • Формула Гаусса-Бонне — В дифференциальной геометрии формула Гаусса Бонне связывает эйлерову характеристику поверхности с её гауссовой кривизной и геодезической кривизной её границы. Пусть M компактное двумерное ориентированное риманово многообразие с границей .… …   Википедия

  • Формула Гаусса—Бонне — В дифференциальной геометрии формула Гаусса Бонне связывает эйлерову характеристику поверхности с её гауссовой кривизной и геодезической кривизной её границы. Пусть M компактное двумерное ориентированное риманово многообразие с границей .… …   Википедия

  • Теорема Гаусса—Бонне — …   Википедия

  • Теорема Бонне — может означать: Достаточное условие существования поверхности с данной первой и второй квадратичной формой, ― см. уравнения Петерсона ― Кодацци. Теорема Бонне о линейчатой поверхности. См.также Формула Гаусса Бонне …   Википедия

  • Теорема Гаусса (значения) — Существует несколько утверждений, называемых теоремой Гаусса: Теорема Гаусса (закон Гаусса) в электростатике и электродинамике и общая формулировка ее формальной части Теорема Гаусса Остроградского в векторном анализе. Теорема Гаусса Ванцеля о… …   Википедия

  • ГАУССА ТЕОРЕМА — (theorema egregium): гауссова кривизна (произведение главных кривизн) регулярной поверхности в евклидовом пространстве не меняется при изгибаниях поверхности. (Здесь регулярность означает гладкое погружение.) Г. т. следует из того, что гауссова… …   Математическая энциклопедия

  • Формула Гаусса — В дифференциальной геометрии формула Гаусса  Бонне связывает эйлерову характеристику поверхности с её гауссовой кривизной и геодезической кривизной её границы. Пусть   компактное двумерное ориентированное риманово многообразие с гладкой …   Википедия

  • ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел геометрии, в к ром изучаются геометрич. образы, в первую очередь кривые и поверхности, методами математич. анализа. Обычно в Д. г. изучаются свойства кривых и поверхностей в малом, т. е. свойства сколь угодно малых их кусков. Кроме того, в …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»