МНОГОГРАННИК

МНОГОГРАННИК

часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника. На рис. 1 представлены несколько известных многогранников. Первые два служат примерами р-угольных пирамид, т.е. многогранников, состоящих из р-угольника, называемого основанием, и р треугольников, примыкающих к основанию и имеющих общую вершину (называемую вершиной пирамиды). При р = 3 (см. рис. 1,а) основанием может служить любая грань пирамиды. Пирамида, основание которой имеет форму правильного р-угольника, называется правильной р-угольной пирамидой. Так, можно говорить о квадратных, правильных пятиугольных и т.д. пирамидах. На рис. 1,в, 1,г и 1,д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р-угольника, причем плоскости обоих p-угольников параллельны. Если эти два р-угольника (основания) конгруэнтны и расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника параллельными прямолинейными отрезками, то такой многогранник называется р-угольной призмой. Примерами двух р-угольных призм могут служить треугольная призма (р = 3) на рис. 1,в и пятиугольная призма (р = 5) на рис. 1,г. Если же основания расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 1,д, то такой многогранник называется р-угольной антипризмой.
Рис. 1. МНОГОГРАННИКИ. а - тетраэдр, или пирамида с треугольными гранями; б - пирамида с треугольными гранями и квадратным основанием; в - треугольная призма; г - пятиугольная призма; д - р-угольная антипризма; е - исключенный тип многогранника с пересекающимися гранями.
Рис. 1. МНОГОГРАННИКИ. а - тетраэдр, или пирамида с треугольными гранями; б - пирамида с треугольными гранями и квадратным основанием; в - треугольная призма; г - пятиугольная призма; д - р-угольная антипризма; е - исключенный тип многогранника с пересекающимися гранями.

Кроме двух оснований, у р-угольной призмы имеются р граней - параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой, а если к тому же основаниями служат правильные р-угольники, то призма называется прямой правильной р-угольной призмой. р-угольная антипризма имеет (2p + 2) граней: 2р треугольных граней и два p-угольных основания. Если основаниями служат конгруэнтные правильные р-угольники, а прямая, соединяющая их центры, перпендикулярна их плоскостям, то антипризма называется прямой правильной р-угольной антипризмой. В определении многогранника последняя оговорка сделана для того, чтобы исключить из рассмотрения такие аномалии, как две пирамиды с общей вершиной. Теперь мы введем дополнительное ограничение множества допустимых многогранников, потребовав, чтобы никакие две грани не пересекались, как на рис. 1,е. Любой многогранник, удовлетворяющий этому требованию, делит пространство на две части, одна из которых конечна и называется "внутренней". Другая, оставшаяся часть, называется внешней. Многогранник называется выпуклым, если ни один прямолинейный отрезок, соединяющий любые две его точки, не содержит точек, принадлежащих внешнему пространству. Многогранники на рис. 1,а, 1,б, 1,в и 1,д выпуклые, а пятиугольная призма на рис. 1,г не выпуклая, так как, например, отрезок PQ содержит точки, лежащие во внешнем пространстве призмы.
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
Выпуклый многогранник называется правильным, если он удовлетворяет следующим двум условиям: (i) все его грани - конгруэнтные правильные многоугольники; (ii) к каждой вершине примыкает одно и то же число граней. Если все грани - правильные р-угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p, q}. Это обозначение было предложено Л. Шлефли (1814-1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе. Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются "правильными звездчатыми многогранниками". Так как мы условились такие многогранники не рассматривать, то под правильными многогранниками мы будем понимать исключительно выпуклые правильные многогранники.
Платоновы тела. На рис. 2 изображены правильные многогранники. Простейшим из них является правильный тетраэдр, гранями которого служат четыре равносторонних треугольника и к каждой из вершин примыкают по три грани. Тетраэдру соответствует запись {3, 3}. Это не что иное, как частный случай треугольной пирамиды. Наиболее известен из правильных многогранников куб (иногда называемый правильным гексаэдром) - прямая квадратная призма, все шесть граней которой - квадраты. Так как к каждой вершине примыкают по 3 квадрата, куб обозначается {4, 3}. Если две конгруэнтные квадратные пирамиды с гранями, имеющими форму равносторонних треугольников, совместить основаниями, то получится многогранник, называемый правильным октаэдром. Он ограничен восемью равносторонними треугольниками, к каждой из вершин примыкают по четыре треугольника, и следовательно, ему соответствует запись {3, 4}. Правильный октаэдр можно рассматривать и как частный случай прямой правильной треугольной антипризмы. Рассмотрим теперь прямую правильную пятиугольную антипризму, грани которой имеют форму равносторонних треугольников, и две правильные пятиугольные пирамиды, основания которых конгруэнтны основанию антипризмы, а грани имеют форму равносторонних треугольников. Если эти пирамиды присоединить к антипризме, совместив их основания, то получится еще один правильный многогранник. Двадцать его граней имеют форму равносторонних треугольников, к каждой вершине примыкают по пять граней. Такой многогранник называется правильным икосаэдром и обозначается {3, 5}. Помимо четырех названных выше правильных многогранников, существует еще один - правильный додекаэдр, ограниченный двенадцатью пятиугольными гранями; к каждой его вершине примыкают по три грани, поэтому додекаэдр обозначается как {5, 3}.
Рис. 2. ПЛАТОНОВЫ ТЕЛА, или правильные многогранники, имеют в качестве граней конгруэнтные правильные многоугольники, причем число граней, примыкающих к каждой вершине, одинаково. Таковы, как показано на рисунке, тетраэдр, куб (или гексаэдр), октаэдр, икосаэдр и додекаэдр. Первое число в скобках указывает, сколько сторон у каждой грани, второе - число граней, примыкающих к каждой вершине.
Рис. 2. ПЛАТОНОВЫ ТЕЛА, или правильные многогранники, имеют в качестве граней конгруэнтные правильные многоугольники, причем число граней, примыкающих к каждой вершине, одинаково. Таковы, как показано на рисунке, тетраэдр, куб (или гексаэдр), октаэдр, икосаэдр и додекаэдр. Первое число в скобках указывает, сколько сторон у каждой грани, второе - число граней, примыкающих к каждой вершине.

Пять перечисленных выше правильных многогранников, часто называемых также "телами Платона", захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами - огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. О том, что они не утратили свою притягательность и поныне, весьма убедительно свидетельствует картина испанского художника Сальвадора Дали Тайная вечеря. Древними греками исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида (см. также ГЕОМЕТРИЯ). Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.
Число правильных многогранников. Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники. Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p, q} - произвольный правильный многогранник. Так как его гранями служат правильные р-угольники, их внутренние углы, как нетрудно показать, равны (180 - 360/р) или 180 (1 - 2/р) градусам. Так как многогранник {p, q} выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство

где символ < означает "меньше чем". После несложных алгебраических преобразований полученное неравенство приводится к виду

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует. Все пять правильных многогранников перечислены в таблице, приведенной ниже. В трех последних столбцах указаны N0 - число вершин, N1 - число ребер и N2 - число граней каждого многогранника. К сожалению, приводимое во многих учебниках геометрии определение правильного многогранника неполно. Распространенная ошибка состоит в том, что в определении требуется лишь выполнение приведенного выше условия (i), но упускается из виду условие (ii). Между тем условие (ii) совершенно необходимо, в чем проще всего убедиться, рассмотрев выпуклый многогранник, удовлетворяющий условию (i), но не удовлетворяющий условию (ii). Простейший пример такого рода можно построить, отождествив грань правильного тетраэдра с гранью еще одного тетраэдра, конгруэнтного первому. В результате мы получим выпуклый многогранник, шестью гранями которого являются конгруэнтные равносторонние треугольники. Однако к одним вершинам примыкают три грани, а к другим - четыре, что нарушает условие (ii).
Свойства правильных многогранников. Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой "описанной сферой", имеются еще две важные сферы. Одна из них, "срединная сфера", проходит через середины всех ребер, а другая, "вписанная сфера", касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.
Двойственные многогранники. Рассмотрим правильный многогранник {p, q} и его срединную сферу S. Средняя точка каждого ребра касается сферы. Заменяя каждое ребро отрезком перпендикулярной прямой, касательной к S в той же точке, мы получим N1 ребер многогранника, двойственного многограннику {p, q}. Нетрудно показать, что гранями двойственного многогранника служат правильные q-угольники и что к каждой вершине примыкают р граней. Следовательно, многограннику {p, q} двойствен правильный многогранник {q, p}. Многограннику {3, 3} двойствен другой многогранник {3, 3}, конгруэнтный исходному (поэтому {3, 3} называется самодвойственным многогранником), многограннику {4, 3} двойствен многогранник {3, 4}, а многограннику {5, 3} - многогранник {3, 5}. На рис. 3 многогранники {4, 3} и {3, 4} показаны в положении двойственности друг другу. Кроме того, каждой вершине, каждому ребру и каждой грани многогранника {p, q} соответствует единственная грань, единственное ребро и единственная вершина двойственного многогранника {q, p}. Следовательно, если {p, q} имеет N0 вершин, N1 ребер и N2 граней, то {q, p} имеет N2 вершин, N1 ребер и N0 граней.
Рис. 3. ДВОЙСТВЕННЫЕ МНОГОГРАННИКИ. Куб и октаэдр находятся в положении двойственности друг другу, грани являются q-угольниками, р из которых примыкают к каждой вершине.
Рис. 3. ДВОЙСТВЕННЫЕ МНОГОГРАННИКИ. Куб и октаэдр находятся в положении двойственности друг другу, грани являются q-угольниками, р из которых примыкают к каждой вершине.

Так как каждая из N2 граней правильного многогранника {p, q} ограничена р ребрами и каждое ребро является общим ровно для двух граней, то всего имеется pN2/2 ребер, поэтому N1 = pN2/2. У двойственного многогранника {q, p} ребер также N1 и N0 граней, поэтому N1 = qN0/2. Таким образом, числа N0, N1 и N2 для любого правильного многогранника {p, q} связаны соотношением

Симметрия. Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы. Пусть l - прямая, соединяющая центры оснований. Поворот вокруг l на любое целое кратное угла 360/р градусов является симметрией. Пусть, далее, p - плоскость, проходящая посредине между основаниями параллельно им. Отражение относительно плоскости p (движение, переводящее любую точку P в точку P', такую, что p пересекает отрезок PP' под прямым углом и делит его пополам) - еще одна симметрия. Комбинируя отражение относительно плоскости p с поворотом вокруг прямой l, мы получим еще одну симметрию. Любую симметрию многогранника можно представить в виде произведения отражений. Под произведением нескольких движений многогранника как твердого тела здесь понимается выполнение отдельных движений в определенном заранее установленном порядке. Например, упоминавшийся выше поворот на угол 360/р градусов вокруг прямой l есть произведение отражений относительно любых двух плоскостей, содержащих l и образующих относительно друг друга угол в 180/р градусов. Симметрия, являющаяся произведением четного числа отражений, называется прямой, в противном случае - обратной. Таким образом, любой поворот вокруг прямой - прямая симметрия. Любое отражение есть обратная симметрия. Рассмотрим подробнее симметрии тетраэдра, т.е. правильного многогранника {3, 3}. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии. Для наглядности полезно построить картонную модель правильного тетраэдра и убедиться, что тетраэдр действительно обладает 24 симметриями. Развертки, которые можно вырезать из тонкого картона и, сложив, склеить из них пять правильных многогранников, приведены на рис. 4.
Рис. 4. РАЗВЕРТКИ пяти правильных многогранников.
Рис. 4. РАЗВЕРТКИ пяти правильных многогранников.

Прямые симметрии остальных правильных многогранников можно описать не по отдельности, а все вместе. Условимся понимать под {p, q} любой правильный многогранник, кроме {3, 3}. Прямая, проходящая через центр {p, q} и любую вершину, проходит через противоположную вершину, и любой поворот на целое кратное 360/q градусов вокруг этой прямой является симметрией. Следовательно, для каждой такой прямой существуют, включая тождественное преобразование, (q - 1) различных симметрий. Каждая такая прямая соединяет две из N0 вершин; следовательно, всего таких прямых - N0/2, что дает (q - 1) > N0/2 симметрий. Кроме того, прямая, проходящая через центр многогранника {p, q} и центр любой грани, проходит через центр противоположной грани, и любой поворот вокруг такой прямой на целое кратное 360/р градусов является симметрией. Так как общее число таких линий равно N2/2, где N2 - число граней многогранника {p, q}, мы получаем (p - 1) N2/2 различных симметрий, включая тождественное преобразование. Наконец, прямая, проходящая через центр и середину любого ребра многогранника {p, q}, проходит через середину противоположного ребра, и симметрией является полуоборот вокруг этой прямой. Поскольку имеется N1/2 таких прямых, где N1 - число ребер многогранника {p, q}, мы получаем еще N1/2 симметрий. С учетом тождественного преобразования получаем

прямых симметрий. Других прямых симметрий нет, и имеется столько же обратных симметрий. Хотя формула (3) была получена не для многогранника {3, 3}, нетрудно проверить, что она верна и для него. Таким образом, многогранник {3, 3} обладает 12 прямыми симметриями, многогранники {4, 3} и {3, 4} имеют по 24 симметрии, а многогранники {5, 3} и {3, 5} - по 60 симметрий. Читатели, знакомые с абстрактной алгеброй, поймут, что симметрии многогранника {p, q} образуют группу относительно определенного выше "умножения". В этой группе прямые симметрии образуют подгруппу индекса 2, а обратные симметрии группу не образуют, так как нарушают свойство замкнутости и не содержат тождественного преобразования (единичного элемента группы). Обычно о группе прямых симметрий говорят как о группе многогранника, а полную группу симметрий называют его расширенной группой. Из рассмотренных выше свойств двойственных многогранников ясно, что любой правильный многогранник и двойственный ему многогранник имеют одну и ту же группу. Группа тетраэдра называется тетраэдрической группой, группа куба и октаэдра называется октаэдрической группой, а группа додекаэдра и икосаэдра - икосаэдрической группой. Они изоморфны знакопеременной группе А4 из четырех символов, симметрической группе S4 из четырех символов и знакопеременной группе А5 из пяти символов соответственно (см. также АЛГЕБРА АБСТРАКТНАЯ).
ФОРМУЛА ЭЙЛЕРА
Рассматривая таблицу, можно заметить интересное соотношение между числом вершин N0, числом ребер N1 и числом граней N2 любого выпуклого правильного многогранника {p, q}. Речь идет о соотношении

которое называется формулой Эйлера в честь открывшего ее Л.Эйлера (1707-1783). Левая часть формулы (4) называется "эйлеровой характеристикой". Формула Эйлера используется в сочетании с формулами (2) и (3). Из (4) и (2) получаем:

Отсюда следует выражение для N1 через p и q:

где

Воспользовавшись еще раз формулой (2), находим аналогичные выражения для N0 и N2:

Подставляя полученные выражения в формулы (3) и (4), получаем, что число прямых симметрий многогранника {p, q} равно

Это число можно записать также в одной из эквивалентных форм: qN0, 2N1 или pN2. Область применения формулы Эйлера. Значимость формулы Эйлера усиливается тем, что она применима не только к платоновым телам, но и к любому многограннику, гомеоморфному сфере (см. ТОПОЛОГИЯ). Это утверждение доказывается следующим образом. Пусть P - любой многогранник, гомеоморфный сфере, с N0 вершинами, N1 ребрами и N2 гранями; пусть c = N0 - N1 + N2 - эйлерова характеристика многогранника P. Требуется доказать, что c = 2. Так как Р гомеоморфен сфере, мы можем удалить одну грань и превратить остальные в некоторую конфигурацию на плоскости (например, на рис. 5,а и 5,б вы видите призму, у которой удалена передняя плоскость). "Плоскостная конфигурация" представляет собой сеть точек и прямолинейных отрезков, называемых соответственно "вершинами" и "ребрами", при этом вершины служат концами ребер. Вершины и ребра рассматриваемой нами конфигурации мы считаем смещенными и деформированными вершинами и ребрами многогранника. Таким образом, эта конфигурация имеет N0 вершин и N1 ребер. Остальные N2 - 1 граней многогранника деформируются в N2 - 1 непересекающихся областей на плоскости, определяемой конфигурацией. Назовем эти области "гранями" конфигурации. Вершины, ребра и грани конфигурации и определяют эйлерову характеристику, которая в данном случае равна c - 1.
Рис. 5. ФОРМУЛА ЭЙЛЕРА позволяет решить, какие многогранники могут быть сведены к плоским фигурам последовательным удалением одной грани за другой. На рисунке показано превращение треугольной призмы в квадрат.
Рис. 5. ФОРМУЛА ЭЙЛЕРА позволяет решить, какие многогранники могут быть сведены к плоским фигурам последовательным удалением одной грани за другой. На рисунке показано превращение треугольной призмы в квадрат.

Теперь мы проведем сплющивание так, что если удаленная грань была р-угольником, то все N2 - 1 граней конфигурации заполнят внутренность р-угольника. Пусть А - некоторая вершина внутри р-угольника. Предположим, что в А сходятся r ребер. Если удалить А и все r сходящихся в ней ребер, то число вершин уменьшится на 1, ребер - на r, граней - на r - 1 (см. рис. 5,б и 5,в). У новой конфигурации N'0 = N0 - 1 вершин, N'1 = N1 - r ребер и N'2 = N2 - 1 - (r - 1) граней; следовательно,

Таким образом, удаление одной внутренней вершины и сходящихся в ней ребер не меняет эйлеровой характеристики конфигурации. Поэтому, удалив все внутренние вершины и сходящиеся в них ребра, мы тем самым сведем конфигурацию к р-угольнику и его внутренности (рис. 5,г). Но эйлерова характеристика останется по-прежнему равной c - 1, а так как конфигурация имеет р вершин, р ребер и 1 грань, мы получаем

Таким образом, c = 2, что и требовалось доказать. Далее можно доказать, что если эйлерова характеристика многогранника равна 2, то многогранник гомеоморфен сфере. Иначе говоря, мы можем обобщить полученный выше результат, показав, что многогранник гомеоморфен сфере в том и только в том случае, если его эйлерова характеристика равна 2.
Обобщенная формула Эйлера. Для классификации других многогранников используется обобщенная формула Эйлера. Если у некоторого многогранника 16 вершин, 32 ребра и 16 граней, то его эйлерова характеристика равна 16 - 32 + 16 = 0. Это позволяет утверждать, что данный многогранник принадлежит классу многогранников, гомеоморфных тору. Отличительной особенностью этого класса является эйлерова характеристика, равная нулю. Более общо, пусть Р - многогранник с N0 вершинами, N1 ребрами и N2 гранями. Говорят, что данный многогранник гомеоморфен поверхности рода n в том и только в том случае, если

Наконец, следует заметить, что ситуация существенно усложняется, если смягчить прежнее ограничение, согласно которому никакие две грани многогранника не должны пересекаться. Например, появляется возможность существования двух негомеоморфных многогранников с одной и той же эйлеровой характеристикой. Их следует различать по другим топологическим свойствам.

Энциклопедия Кольера. — Открытое общество. 2000.

Игры ⚽ Поможем решить контрольную работу
Синонимы:

Полезное


Смотреть что такое "МНОГОГРАННИК" в других словарях:

  • многогранник — многогранник …   Орфографический словарь-справочник

  • МНОГОГРАННИК — геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер вершинами многогранника. По числу граней различают четырехгранники, пятигранники и т.… …   Большой Энциклопедический словарь

  • многогранник — полиэдр, политоп; симплекс Словарь русских синонимов. многогранник сущ. • полиэдр Словарь русских синонимов. Контекст 5.0 Информатик. 2012 …   Словарь синонимов

  • МНОГОГРАННИК — МНОГОГРАННИК, многогранника, муж. (мат.). Геометрическое тело, ограниченное со всех сторон плоскими прямолинейными гранями (треугольниками, четырехугольниками и т.д.). Правильный многогранник. || Такое же тело, ограниченное более, чем четырьмя… …   Толковый словарь Ушакова

  • МНОГОГРАННИК — МНОГОГРАННИК, а, муж. Геометрическое тело, ограниченное со всех сторон плоскими многоугольниками. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Многогранник — [polihedron] выпуклое ограниченное множество точек, удовлетворяющих одновременно конечному числу неравенств типа: a11x1 + … + a1nxn ≤ b1 ……………….. am1x1 + … + amnxn ≤ bm или в матричной записи M =… …   Экономико-математический словарь

  • многогранник — Выпуклое ограниченное множество точек, удовлетворяющих одновременно конечному числу неравенств типа: a11x1 + … + a1nxn ? b1 ……………….. am1x1 + … + amnxn ? bm или в матричной записи M = {x?En | Ax ? B}. М. имеет конечное число крайних точек,… …   Справочник технического переводчика

  • МНОГОГРАННИК — (полиэдр) геометрическое тело, ограниченное плоскими (см.). Правильный М. геометрическая выпуклая поверхность, у которой все грани правильные многоугольники с одним и тем же числом сторон и в каждой вершине многогранника сходится одинаковое… …   Большая политехническая энциклопедия

  • Многогранник — В Викисловаре есть статья «многогранник» …   Википедия

  • многогранник — а; м. Геометрическое тело, ограниченное со всех сторон плоскими многоугольниками. Правильный м. * * * многогранник геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются рёбрами… …   Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»