- СВЕРХНОВАЯ ЗВЕЗДА
взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла. Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что это взрыв белого карлика - звезды, по массе близкой к Солнцу, но меньшей по размеру и более плотной. В составе белого карлика почти нет водорода, поскольку это конечный продукт эволюции нормальной звезды. В 1930-х годах С.Чандрасекар показал, что масса белого карлика не может быть выше определенного предела. Если он находится в двойной системе с нормальной звездой, то ее вещество может перетекать на поверхность белого карлика. Когда его масса превысит предел Чандрасекара, белый карлик коллапсирует (сжимается), нагревается и взрывается.
См. также ЗВЕЗДЫ. В спектрах сверхновых II типа наблюдаются линии водорода. Поэтому считают, что это результат взрыва нормальных звезд с внешними слоями, богатыми водородом. Излучение звезд обусловлено термоядерными реакциями, происходящими в их центральной части. Эти реакции разогревают звездное вещество, увеличивая давление на внешние слои и удерживая звезду от коллапса под действием собственной гравитации. Постепенно топливо в центре звезды истощается, и у нее образуется ядро, лишенное источника тепла. Если исходная масса звезды превышает массу Солнца более чем в 10 раз, то масса ее ядра может превысить предел Чандрасекара и оно стремительно коллапсирует, сбрасывая при этом внешние слои звезды в виде взрыва сверхновой. Само ядро может после этого стать нейтронной звездой - маленьким сверхплотным объектом, состоящим в основном из нейтронов.
См. также
ГРАВИТАЦИОННЫЙ КОЛЛАПС;
НЕЙТРОННАЯ ЗВЕЗДА. Сверхновая II типа вспыхнула 23 февраля 1987 в соседней с нами галактике Большое Магелланово Облако. Ей дали имя Яна Шелтона, первым заметившего вспышку сверхновой с помощью телескопа, а затем и невооруженным глазом. (Последнее подобное открытие принадлежит Кеплеру, увидевшему вспышку сверхновой в нашей Галактике в 1604, незадолго до изобретения телескопа.) Одновременно с оптической вспышкой сверхновой 1987 специальные детекторы в Японии и в шт. Огайо (США) зарегистрировали поток нейтрино - элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Хотя поток нейтрино был испущен звездой вместе с оптической вспышкой примерно 150 тыс. лет назад, он достиг Земли практически одновременно с фотонами, доказав тем самым, что нейтрино не обладает массой и движется со скоростью света. Эти наблюдения подтвердили также предположение, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит.
См. также ЧЕРНАЯ ДЫРА. В нашей Галактике Крабовидная туманность является остатком взрыва сверхновой, который наблюдали китайские ученые в 1054. Известный астроном Т.Браге также наблюдал в 1572 сверхновую, вспыхнувшую в нашей Галактике. Хотя сверхновая Шелтона стала первой близкой сверхновой, открытой после Кеплера, сотни сверхновых в других, более далеких галактиках были замечены при помощи телескопов за последние 100 лет. В остатках взрыва сверхновой можно найти углерод, кислород, железо и более тяжелые элементы. Следовательно, эти взрывы играют важную роль в нуклеосинтезе - процессе образования химических элементов. Возможно, что 5 млрд. лет назад рождению Солнечной системы тоже предшествовал взрыв сверхновой, в результате которого возникли многие элементы, вошедшие в состав Солнца и планет.
См. также НУКЛЕОСИНТЕЗ.
ЛИТЕРАТУРА
Псковский Ю.П. Новые и сверхновые звезды. М., 1985
Шкловский И.С. Сверхновые звезды. М., 1976
Энциклопедия Кольера. — Открытое общество. 2000.