- СПЕКТР
электромагнитного излучения, упорядоченная по длинам совокупность монохроматических волн, на которую разлагается свет или иное электромагнитное излучение. Типичный пример спектра - хорошо известная всем радуга. Возможность разложения солнечного света на непрерывную последовательность лучей разных цветов впервые экспериментально показал И.Ньютон в 1666. Направив на трехгранную призму узкий пучок света, проникавший в затемненную комнату через маленькое отверстие в ставне окна, он получил на противоположной стене изображение окрашенной полоски с радужным чередованием цветов, которая была названа им латинским словом spectrum. Проводя опыты с призмами, Ньютон пришел к следующим важным выводам: 1) обычный "белый" свет является смесью лучей, каждый из которых имеет свой собственный цвет; 2) лучи разных цветов, преломляясь в призме, отклоняются на различные углы, вследствие чего "белый" свет разлагается на цветные составляющие. Со временем ньютоновская интерпретация природы света завоевала всеобщее признание, поскольку хорошо согласовалась с экспериментальными данными, а сам эксперимент был принят учеными за основу научного подхода к изучению явлений природы. Видимый свет - это лишь малая часть широкого спектра электромагнитного излучения, включающего радиоволновое, микроволновое, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Каждый вид излучения представляет собой волну из взаимно перпендикулярных электрической и магнитной компонент, периодически меняющихся с определенными частотами (иначе говоря, волна имеет определенную длину). Волны, которые воспринимаются глазом человека, принадлежат видимой области; именно к ней в свое время относился введенный Ньютоном термин "спектр". В современной науке этот термин распространен на весь диапазон электромагнитного излучения. Спектральные исследования сыграли ключевую роль в познании Вселенной. С их помощью удалось понять строение не только атомов и молекул, но и таких астрофизических объектов, как Солнце, звезды, планеты, и получить подробную информацию об их движении. Разработанная теория спектров и накопленные эмпирические данные позволили создать метод спектрального анализа для качественного и количественного определения состава химических веществ.
См. также
ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ;
РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ;
СВЕТ.
Классификация спектров. Все спектры делятся на два основных класса: спектры испускания (или эмиссионные) и спектры поглощения. Каждый класс, в свою очередь, подразделяется на непрерывные (сплошные), полосатые и линейчатые спектры. Поясним эту классификацию на примере видоизмененной схемы опыта Ньютона (которая, заметим, была применена лишь столетие спустя). Основное нововведение в этой схеме состояло в том, что круглое отверстие в ставне было заменено коллиматором - узкой щелью и линзой перед призмой. Вторая линза помещалась за призмой и предназначалась для проецирования спектра на экран, как это делал сам Ньютон в своих более поздних опытах. Если на щель простого спектроскопа (как теперь называется устройство, состоящее из щели, линз и призмы) направить свет от лампы накаливания, то на экране возникает непрерывный спектр со следующим порядком чередования цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Если же щель осветить пламенем, в которое внесена крупинка поваренной соли (хлорида натрия NaCl), то спектр будет фактически состоять из двух близко расположенных ярких желтых линий. Аналогично, если щель осветить красным светом неоновой рекламной трубки, то на экране появится ряд ярких красных линий. Здесь каждая линия - это изображение щели спектроскопа, образованное светом определенной длины волны, а полученный спектр называется линейчатым спектром испускания. Существуют спектры, состоящие из групп линий, расположенных настолько тесно, что каждая группа выглядит как узкий участок непрерывного спектра. Такие спектры называются полосатыми.
Линии Фраунгофера. В 1802, изучая непрерывный спектр Солнца, У.Волластон заметил в нем множество тонких темных линий. Двенадцатью годами позже Й.Фраунгофер, заменив зрительную трубу в спектроскопе Волластона трубой теодолита, точно измерил угловое положение темных линий. В честь него эти линии теперь называются фраунгоферовыми линиями солнечного спектра. См. также СОЛНЦЕ.
Исследования Кирхгофа. В 1859 Г.Кирхгоф сформулировал свой знаменитый закон, связывающий поглощение и испускание. Суть его заключается в том, что любое вещество хорошо поглощает излучение именно тех длин волн, которое само интенсивно испускает. На основании этого закона Кирхгоф следующим образом объяснил появление фраунгоферовых линий в непрерывном солнечном спектре. Газ, находящийся во внешних, наиболее холодных слоях солнечной атмосферы, избирательно поглощает из сплошного спектра ярко светящейся фотосферы Солнца излучение тех длин волн, которые соответствуют линиям испускания возбужденного газа. Поэтому на отдельных участках непрерывного солнечного спектра резко падает интенсивность и появляются темные линии. Одно из самых важных открытий физической оптики состоит в том, что каждый атом и каждая молекула испускают характерный только для них линейчатый спектр. Многие исследователи, работавшие после Фраунгофера, были близки к этому открытию, но лишь Кирхгоф смог четко сформулировать его и применить на практике. Он понял, что характеристические спектры и закон, связывающий поглощение и испускание, позволяют спектральным методом определить химический состав солнечной атмосферы и, более того, что они являются универсальным инструментом, дающим возможность в лабораторных условиях обнаруживать и анализировать различные элементы (так, к примеру, были открыты рубидий и цезий). Его работы, выполненные совместно с Р.Бунзеном, заложили основы современной спектроскопии.
См. также СПЕКТРОСКОПИЯ.
СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
В соответствии с длинами волн (l) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей - от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только от l, но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником - инфракрасным.
Радиоволны. Электромагнитное излучение с длинами волн примерно от 1 см до 30 000 м составляет радиоволновую часть спектра. Поскольку скорость любого электромагнитного излучения в вакууме составляет 300 000 000 м/с и равна произведению длины волны на частоту (c = ln), то радиоволновому интервалу соответствуют частоты примерно от 10 000 герц (Гц, 1Гц = 1 с-1) до 30 000 мегагерц (МГц, 1МГц = 106 Гц). Излучение таких частот получают с помощью ламповых или полупроводниковых генераторов, а для регистрации применяют резонансные радиосхемы. Радиоволны используются в основном в системах связи и навигации. В 1932 было открыто радиоволновое излучение нашей Галактики, что в значительной мере стимулировало рождение новой науки - радиоастрономии. Крупного успеха радиоастрономия добилась в 1951, когда были обнаружены радиоволны, испускаемые облаками межзвездного водорода на единственной частоте, отвечающей длине волны около 21 см. В лабораториях радиоспектроскопия широко применяется для исследования атомов и молекул.
См. также РАДИОАСТРОНОМИЯ.
Микроволновое излучение. Излучение с длинами волн примерно от 0,5 мм до 30 см (частотный интервал от 600 000 до 1000 МГц) относится к микроволновому диапазону спектра. Для генерации микроволнового излучения применяются специальные электронные лампы (клистроны). Бурное развитие микроволновая техника получила в период Второй мировой войны в связи с резко возросшими требованиями к эффективности средств связи и радиолокации. Микроволновое излучение естественных источников обусловлено главным образом вращением молекул, хотя известны и СВЧ-спектры атомов. Исследование микроволновых вращательных спектров молекул является одни из самых точных методов определения структуры молекул газа.
Инфракрасное излучение. Инфракрасное (ИК) излучение было открыто английским астрономом В.Гершелем в 1800. Пользуясь простым термометром, он установил, что тепловое излучение имеет наибольшую интенсивность за пределами видимой области вблизи его красной границы. Инфракрасная область спектра начинается примерно от 0,8 мкм и простирается примерно до 1 мм. Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней ИК-области (до СПЕКТР1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением. ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте. Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов.
Видимая область. Видимой области соответствует диапазон длин волн от 400 нм (фиолетовая граница) до 760 нм (красная граница), что составляет ничтожную часть полного электромагнитного спектра. Источниками видимого света в лаборатории обычно служат раскаленные твердые тела, электрический разряд и лазеры (обычно лазеры на красителях). Перестраиваемые лазеры на красителях позволяют перекрывать большие участки видимого спектра (например, краситель родамин 6G излучает в интервале 570-660 нм). Наиболее распространенными детекторами видимого излучения являются глаз человека, фотопластинки, фотоэлементы, фотоумножители. Видимые спектры связаны с квантовыми переходами внешних электронов атомов и молекул и содержат важнейшую информацию об их электронной структуре.
Ультрафиолетовое излучение. Ультрафиолетовая (УФ) спектральная область была открыта в 1801, когда И.Риттер и У.Волластон, наблюдая солнечный спектр, обнаружили, что наибольшее почернение хлорида серебра вызывается излучением, более коротковолновым, нежели фиолетовое. К УФ-области относится излучение с длинами волн от 10 до 400 нм. УФ-излучение с длинами волн короче 185 нм поглощается воздухом, поэтому приборы для этого диапазона должны быть вакуумными. Поскольку лишь немногие из обычно прозрачных веществ остаются прозрачными для "вакуумного ультрафиолета", в таких приборах применяется отражательная оптика. Для регистрации ультрафиолетового излучения используются специальные фотопластинки и фотоэлектрические детекторы. Большинство УФ-спектров связано с квантовыми переходами внешних электронов атомов и молекул, поэтому УФ-спектроскопия применяется для исследования строения атомов.
Рентгеновское излучение. В 1895 было сделано одно из самых важных открытий физики: В.Рентген, изучая электрические разряды в газах, заметил, что бумажный экран, подвергнутый специальной обработке, начинает светиться, если его поднести к работающей газоразрядной трубке, и сделал вывод, что свечение возникает под действием нового, неизвестного проникающего излучения, названного им X-лучами. Из дальнейших экспериментов выяснилось, что X-лучи - это электромагнитное излучение, длинноволновая граница которого перекрывается с вакуумным ультрафиолетом, а коротковолновая составляет малую долю нанометра. Рентгеновское излучение с непрерывным спектром часто называют тормозным излучением, поскольку оно возникает при замедлении электронов, бомбардирующих анод рентгеновской трубки.
См. также РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ.
Гамма-излучение. Гамма-излучение отличается от рентгеновского меньшей длиной волны (0,1-10-6нм) и своим происхождением. Ядро, получив в результате ядерной реакции избыточную энергию, может оказаться в возбужденном состоянии. Возвращаясь в состояние с более низкой энергией, оно отдает избыточную энергию, испуская гамма-квант. Изучение спектров гамма-излучения позволяет получить важную информацию о строении ядер и ядерных взаимодействиях, подобно тому, как оптические спектры помогают понять строение атомов и молекул и действующие в них силы.
ЛИТЕРАТУРА
Ельяшевич М.А. Атомная и молекулярная спектроскопия. М., 1962 Собельман И.И. Введение в теорию атомных спектров. М., 1964
Энциклопедия Кольера. — Открытое общество. 2000.