МЕТАЛЛЫ ДЛЯ ЧЕКАНКИ МОНЕТ

МЕТАЛЛЫ ДЛЯ ЧЕКАНКИ МОНЕТ

ПОДГРУППА IB. МЕТАЛЛЫ ДЛЯ ЧЕКАНКИ МОНЕТ МЕДЬ, СЕРЕБРО, ЗОЛОТО
Как упоминалось в общем разделе о переходных элементах, металлы IB и IIB подгрупп имеют заполненный 10 d-электронами предпоследний, (n 1)-й слой. В этом случае нет полного согласия с представлением о том, что у переходных элементов d-оболочка находится в стадии заполнения. Считается, что отличительный электрон в элементах каждого из этих семейств находится на внешней s-орбитали, но на основании химических и физических свойств эти элементы относят к переходным металлам. Действительно, в подгруппе IB внутренние d-электроны обладают такой энергией, что по крайней мере два из них могли бы находиться на внешних слоях. Они достаточно подвижны для участия в образовании химической связи и не относятся к классической ситуации электронов на заполненной d-оболочке. Следует отметить, что d-электроны элементов подгруппы IIB не участвуют в образовании химической связи в соединениях. Все элементы подгруппы IB имеют в электронной конфигурации ns1 электрон, который определяет их общие свойства и общую степень окисления I. Медь и серебро проявляют также степень окисления II, хотя Ag2+ легко переходит в состояние Ag+, что делает его прекрасным окислителем. Золото, в отличие от Cu и Ag, не имеет степени окисления II, а наиболее стабильной степенью его окисления является III. Cu и Ag могут проявлять степень окисления III в жестких условиях под действием сильнейших окислителей. Степени окисления выше III для этих металлов не характерны, хотя вероятны.
Свойства. Серебро имеет более низкие температуры плавления и кипения, легче испаряется, чем медь и золото (см. табл. 17а). Это означает, что металлические связи между атомами серебра слабее. Заполненная целиком 4f-оболочка золота создает полностью завершенный 32 электронами 4-й уровень, что приводит к высокой плотности и малому радиусу его атома. Подвижность внешнего электрона у элементов очевидна, так как они обладают высокой электропроводимостью, причем серебро наивысшей. У меди и серебра потенциалы ионизации почти в два раза больше, чем у металлов подгруппы IA, что указывает на относительную инертность Cu и Ag. Еще алхимики назвали эти металлы "благородными", чтобы отличать их от всех "неблагородных", проявляющих высокую реакционную способность, например Pb и Sn. Все три металла Cu, Ag, Au обладают высокой пластичностью, но особенно отличается золото. Из золота можно изготовить фольгу толщиной около 0,00001 см, а из 1 г золота вытянуть проволоку длиной до 3000 м.
Применение. Благородные металлы традиционно использовались для чеканки монет (см. табл. 17б). Но в настоящее время золото не используется в монетных сплавах оно служит всеобщим эквивалентом, в котором выражается стоимость всех других товаров. Серебро и золото широко применяются в ювелирном деле, а все три металла используются для изготовления украшений, декоративных столовых изделий и др. Применение золота зависит от его чистоты; чистоту можно определять в величинах пробы (чистое золото 1000 единиц пробы) или в каратах (чистое золото имеет 24 карата). Высокая коррозионная стойкость, устойчивость к окислению, а также красивый внешний вид делают металлы этой группы весьма ценными для различного декоративного применения. Благодаря высокой отражательной способности серебро используют при изготовлении зеркал, особенно в области видимого и инфракрасного излучения, а алюминий более выгоден для рефлекторов, работающих в ультрафиолете. Серебряный припой (сплав Ag-Pb) применяют в пайке меди с медью, а также в производстве ламп накаливания.
Месторождения и металлургия. Металлы для приготовления монет мало распространены и, хотя встречаются в свободном состоянии, сильно рассеяны. Уникальный агломерат элементной меди массой более 3 т имеется в выставочном отделе Смитсоновского института. Все металлы подгруппы IB с древних времен получают термическим разложением оксидов или сульфидов. Природные ресурсы свободных металлов в сколько-нибудь значимых отложениях близки к истощению. Сегодня экономичны только крупномасштабные разработки месторождений. Золото имеет очень высокую плотность, благодаря чему его отмывают от более легкой породы и в результате золото остается на дне промывного желоба. Более привлекательны методы, в которых большие объемы золотоносных шламов промывают мощными потоками воды в специальных каналах. Для обработки отходов также имеется несколько технологий. Шламы пропускают над медно-ртутной поверхностью, в результате золото образует со ртутью амальгаму. Ртуть из амальгамы извлекают цианированием. В присутствии кислорода цианид натрия образует с золотом растворимый в воде комплексный ион [[Au(CN)2]], из которого золото вытесняют цинком:

Такие же методы применимы для получения серебра. Другой метод извлечения золота заключается в обработке его хлором с образованием растворимого в воде AuCl3 с последующим выщелачиванием золота из раствора.
Серебро. Серебро получают в основном из технологических отходов производства меди и свинца. Серебро отделяют от свинца, используя хорошую растворимость Ag в цинке и плохую растворимость цинка в расплаве свинца. Небольшое количество цинка добавляют к серебросодержащему свинцу, Ag растворяется в Zn и поднимается на поверхность расплава, с которой его снимают. Затем цинк из серебра отгоняют. Остатки свинца в осадочном серебре удаляют окислением. Окончательной процедурой получения серебра является электролиз или электрорафинирование.
Медь. Из этой подгруппы медь является наиболее нужным в промышленности металлом. Электрические провода, трубы, емкости для химической промышленности в больших количествах изготавливают из меди. Руды сегодня содержат 1% меди, поэтому приходится перерабатывать многие тонны руды. Переработку медных сульфидных руд. Кроме меди высокой чистоты, в промышленности применяются разнообразные медные сплавы. Некоторые из них приведены в табл. 17б. Другие сплавы обсуждались ранее, такие, как медь-бериллий, из которых изготавливают неискрящий инструмент; сплавы с марганцем, используемые для изготовления коррозионностойких материалов для пропеллерных мешалок.
Реакции и соединения. Все металлы подгруппы Cu, Ag, Au устойчивы к действию кислорода, причем наиболее инертно золото. На них не действуют холодные кислоты, такие, как HCl и H2SO4, но Cu и Ag растворимы в горячей H2SO4, а также в холодной и горячей HNO3. Золото растворяется в смеси HCl и HNO3 (царская водка), образуя HAuCl4, золотохлористоводородную кислоту. С галогенами эти металлы образуют галогениды.
Оксиды. При прямом синтезе с кислородом медь и серебро образуют Cu2O, CuO и Ag2O. Оксид CuO можно получить также из ионов Cu(II) и OHпри осторожной низкотемпературной дегидратации (для предотвращения образования Cu2O). Оксид меди(I) Cu2O при растворении в минеральных кислотах (HCl или H2SO4) образует соли меди (II), а не меди(I), из-за реакции диспропорционирования Cu(I) в растворе:
2Cu+ -> Cu0 + Cu2+ Аналогично ведет себя и Au(I): 3Au+ -> 2Au0 + Au3+
Состояние Cu(I) сохраняется в растворе только при образовании комплексного иона. Оксиды Cu2O и Ag2O должны, казалось бы, проявлять сходные свойства, но в действительности они различаются. Cu2O термически неустойчив и разлагается на кислород и Cu0. Простые соли серебра легко образуются из Ag2O, но из Cu2O невозможно получить соли Cu(I). Оксиды Au(I) и Au(III) стабильны. Вот некоторые заключения о необычных состояниях окисления металлов подгруппы: 1) Металлическая медь легче образует Cu2+, чем Cu+, поэтому из Cu0 невозможно получить Cu+, так как получается Cu2+. 2) Металлическое серебро легче образует Ag+, чем Ag2+. 3) Au легче образует Au3+, чем Au+. 4) Переходы Cu+ (r) Cu3+ и Ag0 (r) Ag3+ возможны только под действием сильных окислителей. Поэтому медь и серебро в виде простых ионов Cu3+ и Ag3+ в растворе не существуют. 5) Au3+ как окислитель существенно хуже, чем Cu3+ и Ag3+. 6) Ag+ весьма стабильный ион в растворе, тогда как Cu+ и Au+ в растворе самопроизвольно диспропорционируют.
Амфотерность. CuO и Cu(OH)2 проявляют слабую амфотерность и в сильнощелочной среде образуют [[Cu(OH)4]]2. Металлическая медь в присутствии кислорода растворяется в концентрированном растворе аммиака, образуя комплексное соединение [[Cu(NH3)4]](OH)2, которое обладает редким свойством оно способно растворять соединения целлюлозы и хлопок. Au2O3 амфотерное соединение, в реакции со щелочью образует NaAuO2. Ag2O практически полностью основной оксид.
Галогениды. Галогениды металлов подгруппы IB проявляют более предсказуемые свойства, чем оксиды. Известны галогениды Cu(I) (CuF, CuCl, CuBr и CuI, но CuF в растворе диспропорционирует на CuF2 и Cu0). CuF получают по реакции обмена CuCl с HF или прокаливанием CuF2 в атмосфере HF при 1000° С. Эти галогениды имеют белый цвет, что соответствует иону Cu с полностью завершенной (n 1)d-оболочкой. Для Cu(II) известны все галогениды, кроме CuI2, который диспропорционирует до CuI и I2. Окраска CuF2, CuCl2 и CuBr2 белая, желто-коричневая и черная соответственно. Все галогениды меди(I) и меди(II) в избытке галогена или HX образуют растворимые комплексные соединения с ионами CuI32, CuCl2, CuCl32, CuCl42. Серебро со всеми галогенами образует нерастворимые в воде моногалогениды AgF, AgCl, AgBr и AgI. Существует определенная взаимосвязь между усилением окраски, уменьшением растворимости и уменьшением ионного характера связи в этих галогенидах. Несколько неожиданно, что твердый AgF имеет желтоватую окраску, а раствор Ag+F бесцветен. AgCl, AgBr и AgI окрашены в белый, кремовый и чисто желтый цвета соответственно. AgBr благодаря своей светочувствительности широко используется в фотографии (в производстве пленки и фотобумаги). Микрокристаллические частицы AgBr на поверхности пленки или фотобумаги на свету сенсибилизируются в большей или меньшей степени в зависимости от количества света, засветившего пленку. Затем на пленку действуют органическим восстановителем, и при этом экспонированные частицы AgBr превращаются в металл Ag. Непрореагировавшие частицы AgBr удаляются при закреплении изображения с помощью тиосульфата натрия Na2S2O3 (гипосульфит), который образует стабильный и растворимый комплексный ион [[Ag(S2O3)2]]3, отмываемый из пленки. Высушенная пленка является негативом с темным изображением на местах сильной экспозиции. Позитив получают, просвечивая пленку, лежащую на фотобумаге, покрытой аналогичным химическим составом. После проявления и закрепления наиболее светлые места на фотобумаге соответствуют максимальной яркости при экспозиции. В определенных единичных тонах (как сепия) возможно применение сульфидов для превращения Ag в Ag2S и замена серебра на платиновые металлы.
Благодаря сильному окислительному действию фтора серебро образует соединения с высокой степенью окисления AgF2 и AgF3. Под действием фтора хлориды переходят во фториды. В избытке галогенид-ионов, как и в случае меди, образуются комплексные ионы Ag(I). Например, из AgF или AgCl образуются AgF2и AgCl2. Известны также соединения, которые очень сходны с галогенидами; их даже называют псевдогалогенидами, например цианид серебра AgCN, тиоцианат серебра AgSCN, азид серебра AgN3. У золота наиболее устойчивый галогенид AuF3, однако в избытке HF он гидролизуется до Au(OH)3. Это не слишком необычно для такого высокозарядного иона с большой плотностью. AuCl3 в соответствии со своим строением является димером Au2Cl6. При восстановлении AuCl3 или HAuCl4 водородом или SnCl2 образуется вещество глубокого пурпурового цвета, возможно, мелкодисперсная смесь Au + SnO2. Среди множества других известны комплексные ионы золота (псевдогалогениды) состава [[Au(CN)4]] и [[Au(SCN)4]]. Органические вещества, имеющие донорную электронную пару, также образуют различные комплексы с Au(III). Золото образует некоторые 6-координационные ковалентные ионы, например AuF63, но более распространены тетраковалентные ионы типа AuX4.
Амминокомплексы. Аммиак в водном растворе NH3*H2O образует с ионом серебра и рядом нерастворимых солей растворимые амминокомплексы; аналогичные реакции идут с медью:

И только наиболее нерастворимые соли серебра (AgI и Ag2S) не образуют амминокомплексов. Серебро легко выделяется из комплексов в виде зеркального покрытия на стекле под действием слабых органических восстановителей. Растворы аммиачных комплексов серебра очень неустойчивы, образуют Ag3N и Ag2NH, которые взрываются без видимых причин (сотрясения или удара).
Сульфиды. Сульфиды рассматриваемых металлов мало похожи на оксиды. Медь образует CuS и Cu2S (последнее соединение не является стехиометрическим). CuS вследствие очень низкой растворимости выпадает в осадок при добавлении H2S даже из кислых растворов. Сульфид Cu(I) образуется из CuS при избытке H2S или термической диссоциации CuS. В серусодержащей атмосфере на поверхности серебра образуется темный или черный осадок сульфида серебра. Такой налет на столовой посуде удаляется с трудом с помощью комплексообразования серебра или электрохимическим вытеснением из AgS. AuS не существует, а сульфид Au(III) осаждается из растворов комплексов Au(III) и растворяется в Na2S с образованием NaAuS2.
Другие соединения. Упомянем некоторые соединения подгруппы IB. Широко известен пентагидрат сульфата меди(II) CuSO4*5H2O (медный купорос), используемый как фунгицид вместе с арсенитом меди CuHAsO3 и ацетатом меди Cu(CH3COO)2. При прокаливании кристаллогидрата сульфата меди происходит ступенчатая дегидратация и образуется безводный сульфат белого цвета, а при термической обработке большинства других солей получаются основные соли, например, из CuCl2*5H2O получается CuCl2*Cu(OH)2.
Соли меди(III) можно синтезировать только с помощью сильных окислителей, например, из CuO и KO2 образуется KCuO2; Na9[[Cu(TeO6)2]] получается при электролитическом окислении в щелочной среде; известны также K3[[CuF6]] и K7[[Cu(IO6)2]]. Оксид серебра Ag2O2 (или AgIAgIIIO2) имеет промышленное значение для изготовления электродов в серебряно-цинковых элементах и аккумуляторах. Серебро проявляет степень окисления III в AgF3 и некоторых комплексных соединениях, в которых органические лиганды стабилизируют высокую степень окисления серебра.

Энциклопедия Кольера. — Открытое общество. 2000.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "МЕТАЛЛЫ ДЛЯ ЧЕКАНКИ МОНЕТ" в других словарях:

  • Драгоценные металлы — (Precious metals) Драгоценные металлы это редко встречающиеся металлы, которые отличаются блеском, красотой и стойкостью к коррозии История добычи драгоценных металлов, разновидности, свойства, применение, распространение в природе, сплавы… …   Энциклопедия инвестора

  • Монетные металлы — Золотой слиток и золотые монеты Монетные металлы металлы и их сплавы, используемые для чеканки и литья монет и …   Википедия

  • Чеканка монет — Станок для чеканки Монетное дело  изготовление монет литьём, чеканкой или другим способом для использования в качестве денег. Первоначально в монетах использовались металлы по собственной стоимости и монетное дело находилось в частных руках. По… …   Википедия

  • ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ — простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в …   Энциклопедия Кольера

  • Платиновые монеты — Аверс платиновой монеты American Platinum Eagle. Платиновые монеты  монеты, изготовленные из платины, в настоящее время выпускаются для коллекционных и инвес …   Википедия

  • Российский рубль — (Russian Ruble, RUR) Валюта российский рубль, история возникновения и развития российского рубля Валюта российский рубль, история возникновения и развития российского рубля, место валюты в мировой экономике Содержание Содержание 1.Российский 1.1… …   Энциклопедия инвестора

  • Серебро — (лат. Argentum)         Ag, химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,868; металл белого цвета, пластичный, хорошо полируется. В природе находится в виде смеси двух стабильных изотопов 107Ag …   Большая советская энциклопедия

  • Природные ресурсы — (Natural Resources) История использования природных ресурсов, мировые природные ресурсы Классификация природных ресурсов, природные ресурсы России, проблема исчерпаемости природных ресурсов, рациональное использование природных ресурсов… …   Энциклопедия инвестора

  • Золото — Au (хим.). Физические свойства. Чистое З. в слитках имеет характерный желтый цвет, при получении же в виде тонкого порошка (из растворов солей при помощи различных восстановителей) цвет его меняется от темно фиолетового до красного. В тонких… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Серебро — У этого термина существуют и другие значения, см. Серебро (значения). 47 Палладий ← Серебро → Кадмий …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»