ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ
энергетич. состояния атомов и молекул и др. квантовых систем, характеризующиеся избыточной по сравнению с осн. состоянием энергией. Согласно принципам квантовой механики, атомы и молекулы устойчивы лишь в нек-рых стационарных состояниях, к-рым отвечают определ. значения энергии. Состояние с наинизшей энергией наз. основным, остальные -возбужденными. Изменение энергии атома при переходе из одного стационарного состояния в другое связано с изменением строения его электронной оболочки (см. Атом).

В молекулах при таком переходе может меняться как электронное состояние, связанное с движением электронов относительно атомных ядер, так и характер колебат. и вращат. движений, в к-рых участвуют сами ядра (см. Молекула). В т. наз. приближении Борна - Оппенгеймера рассматривают каждый вид молекулярного движения в отдельности и находят волновые ф-ции и соответствующие значения энергии для электронного, колебат. и вращат. движений; полная волновая ф-ция молекулы представляется в виде произведения соответствующих волновых ф-ций (см. Адиабатическое приближение). Однако не всегда можно достаточно точно разделить электронное, колебат. и вращат. движения. Кроме энергии, состояния атомов и молекул могут различаться спином (электронным и ядерным); частицы в разл. спиновых состояниях имеют почти одинаковые энергии в отсутствие магн. поля, но при наложении поля напряженностью Я их энергии изменяются по-разному.

Переходы между разл. стационарными состояниями атомов и молекул, происходящие с поглощением или испусканием электромагн. излучения, наз. излучательными, а происходящие путем непосредств. обмена энергией между атомами или молекулами - безызлучательными. Энергетику и вероятности излучат. переходов изучает спектроскопия.

B.C. могут терять избыток энергии, переходя в основное состояние (или нижележащие B.C.) путем испускания фотонов, безызлучат. резонансного переноса энергии или при столкновениях с др. молекулами. Поэтому B.C. имеют огранич. время жизни, определяемое суммой констант скорости всех процессов дезактивации. В многоатомных молекулах происходят внутримолекулярные процессы перераспределения энергии между разл. видами возбуждения. В равновесных условиях при данной т-ре заселенность разл. состояний зависит от их энергии в соответствии с распределением Максвелла - Больцмана. При т-рах порядка неск. сот К заселены гл. обр. самые нижние электронное и колебат. состояния, а вращат. и спиновые состояния заселены почти равномерно. Под действием излучения соответствующей частоты возникает сверхравновесная концентрация B.C., зависящая от интенсивности поглощаемого света и времени жизни (времени релаксации) B.C.

Возбужденные состояния атомов. Образуются из основного состояния при переходе одного или неск. электронов (напр., под действием излучения) с занятых орбиталей на свободные (или занятые лишь одним электроном). Наим. энергиями обладают В. с., связанные с переходами во внешних или между внешними электронными оболочками. Более высокие B.C. возникают при переходе электронов с внутр. оболочек многоэлектронных атомов на внешние (напр., под действием рентгеновского излучения).

Электронные уровни атомов и молекул определяются совокупностью квантовых чисел. Электронные состояния атомов обозначают латинскими буквами S, P, D, F, G,..., отвечающими значениям орбитального квантового числа L = О, 1, 2, 3, 4, ... соотв., указывая мультиплетность состояния 1080-1.jpg = 2S+1 (S-спиновое квантовое число) численным индексом слева вверху, а квантовое число полного углового момента 1080-2.jpg -справа внизу. Напр., B.C. атома ртути, имеющие L=l, / = 1, S = О и 1 соотв. обозначают 1 Р 1 и 3P1.

Энергия электрона Ев атоме водорода зависит только от главного квантового числа п(в системе СИ):
1080-3.jpg

где ти е-масса и заряд электрона, h-постоянная Планка,1080-4.jpg -электрич. постоянная (диэлектрич. проницаемость вакуума). Энергия многоэлектронных атомов зависит от всех квантовых чисел.

Возбужденные состояния молекул. Колебат. и вращат. B.C. играют чрезвычайно важную роль в термич. хим. р-циях (см. Динамика элементарного акта р-ции); информацию о строении и св-вах этих состояний дают соответствующие спектры (см. Колебательные спектры. Вращательные спектры). Р-ции, протекающие через высшие колебат. B.C., получаемые путем многократного поглощения фотонов одной и той же молекулой, изучает лазерная химия. Электронные B.C. отличаются от остальных тем, что характеризуют совершенно иное электронное строение молекул и их хим. св-ва. Эти B.C. определяют протекание фотохим., а также нек-рых радиационно-хим. и плазмохим. р-ций. B.C., обладающие одновременно избыточной электронной и колебат. энергией, наз. вибронными состояниями. В данной статье рассмотрена классификация и особенности электронных B.C. молекул.

Для двухатомных молекул, как и для атомов, удается использовать классификацию электронных состояний, основанную на квантовых числах. Электронные состояния молекул, обладающие квантовым числом полного орбитального момента 1080-5.jpg=0, 1, 2, ... обозначают соотв. греческими буквами 1080-6.jpg , указывая мультиплетность состояния индексом слева вверху, а сумму квантовых чисел 1080-7.jpg +1080-8.jpg -компоненту мультиплета - справа внизу (1080-9.jpg -квантовое число проекции электронного спина на ось молекулы).

Электронные B.C. многоатомных молекул классифицируют, основываясь на св-вах симметрии их электронных волновых ф-ций или характере молекулярных орбиталей, занятых "холостыми" электронами, поскольку понятие квантовых чисел электронов для таких молекул теряет простой смысл. Св-ва симметрии электронных волновых ф-ций молекул обозначают в соответствии с теорией групп симметрии. Так, для молекул Н 2 СО, Н 2 О, относящихся к группе симметрии C2V, существует 4 возможных типа симметрии волновой ф-ции (1, A2, В 1 и В 2 )в зависимости от того, сохраняется или меняется ее знак при операциях симметрии, свойственных данной группе. Помимо обозначения типа симметрии, индексом слева вверху указывают мультиплетность состояния. Буквы 1080-10.jpg и ив правом ниж. индексе показывают, сохраняется или меняется знак волновой ф-ции при операции инверсии. Необходимо отметить, что такая классификация в неявном виде предполагает сохранение в B.C. молекулы геометрии ее основного состояния. Это справедливо в общем виде лишь при рассмотрении спектров поглощения, когда выполняется принцип Франка-Кондона. На самом же деле у мн. молекул равновесная конфигурация ядер в В. с. может сильно отличаться от конфигурации в основном состоянии (примеры см. ниже).

В сложных молекулах, обладающих малым числом элементов симметрии, ограничиваются указанием типов молекулярных орбиталей, содержащих неспаренные электроны. В орг. молекулах орбитали классифицируют на связывающие 1080-11.jpg, связывающие 1080-12.jpg (делокализованные в ароматич. и сопряженных системах), разрыхляющие 1080-13.jpg и 1080-14.jpg, несвязывающие орбитали своб. пар электронов гетероатомов и (ортогональные 1080-15.jpgсистеме) и l (сопряженные с 1080-16.jpgсистемой), а также вакантные орбитали и, имеющиеся у нек-рых гетероатомов (напр., у В). В большинстве орг. молекул, содержащих четное число электронов, в основном состоянии все электроны спарены, и оно является синглетным (исключением являются, напр., карбен и его производные, основное состояние к-рых триплетно). При возбуждении один из электронов переходит с занятой (чаще всего связывающей или несвязывающей) орбитали на одну из свободных (разрыхляющую или вакантную). Так, B.C. формальдегида относятся к типам 1080-17.jpg и 1080-18.jpg (в обозначениях теории групп это состояния А 2 и А 1 > соотв.). Простейший способ обозначения B.C., не требующий знания их природы, заключается в их нумерации в порядке возрастания энергии: основное S0 (для молекул с четным числом электронов), возбужденные синглетные 51, S2 и т. д., триплетные 1,Т 2 > и т. д.

В B.C. спины неспаренных электронов м. б. как антипараллельными, так и параллельными. В молекулах с четным числом электронов, т. обр., имеется два набора В. с., различающихся по мультиплетности, - синглетные и триплетные. При этом синглетные и триплетные состояния одной природы имеют разл. электронные волновые ф-ции. Согласно Паули принципу, полная волновая ф-ция является антисимметричной, т. е. меняет знак при перестановке координат двух электронов. Синглетные состояния имеют антисимметричную спиновую и симметричную пространств. волновые ф-ции, а триплетные-симметричную спиновую и антисимметричную пространственную. Вследствие электростатич. отталкивания электронов между собой энергия состояния с симметричной пространств. волновой ф-цией (синглетно-го) выше энергии состояния с аналогичной антисимметричной пространств. волновой ф-цией (триплетного), соответствующего той же электронной конфигурации. В молекулах с нечетным числом электронов соотв. имеются наборы дублетных и квартетных В. с.

В координац. соединениях переходных металлов атомные орбитали центр, иона взаимод. с орбиталями лигандов с образованием молекулярных орбиталей комплекса. В зависимости от симметрии комплексов нек-рые атомные орбитали сохраняют свою энергию и остаются вырожденными. Поэтому в основном состоянии могут реализоваться т. наз. высокоспиновые состояния ионов, когда неск. электронов с одинаковыми спинами расположены по одному на вырожденных атомных орбиталях. В. с. координац. соединений получаются в результате перехода электронов молекулярных орбиталей лиганда на вакантные атомные орбитали металла (состояния переноса заряда лиганд - металл -LUCT), с атомных орбиталей иона металла на вакантные молекулярные орбитали лигандов (состояния переноса заряда металл-лиганд-MLCT), между атомными орбиталями иона металла или между молекулярными орбиталями лигандов. Электронные B.C. координац. соединений также обозначают, основываясь на теории групп симметрии, в соответствии со св-вами симметрии электронной волновой ф-ции.
1080-19.jpg

Изменение электронной структуры атомов и молекул при переходе из основного в В. с. приводит к изменению их геометрии, т. е. равновесных расстояний между атомами в молекулах, дипольных моментов и поляризуемости, хим. св-в. Электронные В. с. могут быть стабильными или диссоциативными (нестабильными). Для первых характерно наличие полного минимума на поверхности потенциальной энергии, для вторых - монотонное понижение энергии при увеличении расстояния между к.-л. атомами или атомными группами. Изменение структуры молекулы при переходе в B.C. можно проиллюстрировать на примере формальдегида. Его основное состояние является плоским, длина связи СЧО составляет 0,122 нм. Синглетное и триплетное 1080-20.jpg В. с. - пирамидальные с углом между СЧО связью и плоскостью СН 2 -группы 20 и 35


Химическая энциклопедия. — М.: Советская энциклопедия. . 1988.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ" в других словарях:

  • ЭЛЕКТРОННЫЕ СПЕКТРЫ — мол. спектры, обусловленные квантовыми переходами из одного электронного состояния молекулы в другое. Переходы, при к рых происходит поглощение кванта электромагн. излучения, образуют Э. с. поглощения. Переходы, сопровождающиеся испусканием… …   Химическая энциклопедия

  • ЛЮМИНЕСЦЕНЦИЯ — (от лат. lumen, род. падеж luminis свет и escent суффикс, означающий слабое действие), свечение в ва, возникающее после поглощения им энергии возбуждения. Представляет собой избыток над тепловым излучением, испускаемым в вом при данной т ре за… …   Химическая энциклопедия

  • НЕРАВНОВЕСНАЯ ХИМИЧЕСКАЯ КИНЕТИКА — изучает кинетич. закономерности хим. р ций при сильном нарушении термодинамич. равновесия в реагирующей системе или физ. хим. среде, в к рой они протекают. Любая хим. р ция нарушает термодинамич. равновесие в системе, но во мн. случаях это… …   Химическая энциклопедия

  • ФОТОХИМИЧЕСКИЕ РЕАКЦИИ — хим. р ции, протекающие под действием света. Поглощение фотона с длиной волны 100 1500 нм, чему соответствует энергия 0,8 12,4 эВ (80 1200 кДж/моль), вызывает квантовый переход молекулы в ва из основного электронного состояния в одно из… …   Химическая энциклопедия

  • МИКРОЧАСТИЦЫ — (от греч. μικρός – малый) – частицы очень малой массы (в частности, нулевой), для движения и взаимодействия к рых существенна дискретность (атомизм) действия. К М. относятся элементарные частицы, атомные ядра, атомы, молекулы, квазичастицы.… …   Философская энциклопедия

  • Статистическая физика —         раздел физики, задача которого выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.… …   Большая советская энциклопедия

  • СВЕТОСТАБИЛИЗАТОРЫ — (фотостабилизаторы), защищают разл. в ва и материалы от действия света. С. классифицируют по хим. строению (гидроксифенилбензотриазолы, гидроксибензофеноны, арилсалицилаты, пространственно затрудненные амины и др.), осн. механизму действия (УФ… …   Химическая энциклопедия

  • ФОТОЭЛЕКТРОХИМИЯ — изучает процессы взаимного преобразования световой и электрич. энергии в системе электрод электролит. Наиб. распространены процессы преобразования энергии света в хим. и электрич. энергию, сопровождающиеся протеканием фототока в цепи освещаемой… …   Химическая энциклопедия

  • Теорема о равнораспределении — Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… …   Википедия

  • МУЛЬТИПЛEТНОСТЬ — (от лат. multiplex многократный), число квантовых состояний молекулы, различающихся только ориентацией суммарного электронного спина. Для мол. систем, в к рых спин орбитальное взаимодействие пренебрежимо мало, состояния с разл. ориентацией спина… …   Химическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»