- ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС
(ЯМР), явление резонансного поглощения радиочастотной электромагн. энергии в-вом с ненулевыми магн. моментами ядер, находящимся во внеш. постоянном мага. поле. Ненулевым ядерным магн. моментом обладают ядра 1 Н, 2 Н, 13 С, 14N, 15N, 19F, 29Si, 31P и др. ЯМР обычно наблюдается в однородном постоянном магн. поле В 0, на к-рое накладывается слабое радиочастотное поле В 1 перпендикулярное полю В 0. Для в-в, у к-рых ядерный спин I= 1/2 (1H, 13C, 15N, 19F, 29Si, 31P и др.), в поле В 0 возможны две ориентации магн. дипольного момента ядра
"по полю" и "против поля". Возникающие два уровня энергии Еза счет взаимод. магн. момента ядра с полем В 0 разделены интервалом
При условии, чтоили
где h - постоянная Планка, v0 - частота радиочастотного поля В 1,
- круговая частота,
- т. наз. гиромагн. отношение ядра, наблюдается резонансное поглощение энергии поля B1, названное ЯМР. Для нуклидов 1H, 13C, 31 Р частоты ЯМР в поле В 0= 11,7 Тл равны соотв. (в МГц): 500, 160,42 и 202,4; значения
(в МГц/Тл): 42,58, 10,68 и 17,24. Согласно квантовой модели в поле В 0 возникает 2I+1 уровней энергии, переходы между к-рыми разрешены при
где т - магн. квантовое число.
Техника эксперимента. Параметры спектров ЯМР. На явлении ЯМР основана спектроскопия ЯМР. Спектры ЯМР регистрируют с помощью радиоспектрометров (рис.). Образец исследуемого в-ва помещают как сердечник в катушку генерирующего контура (поле B1), расположенного в зазоре магнита, создающего поле В 0 так, что
При
наступает резонансное поглощение, что вызывает падение напряжения на контуре, в схему к-рого включена катушка с образцом. Падение напряжения детектируется, усиливается и подается на развертку осциллографа или записывающее устройство. В совр. радиоспектрометрах ЯМР обычно используют мага, поля напряженностью 1-12 Тл. Область спектра, в к-рой имеется детектируемый сигнал с одним или неск. максимумами, наз. линией поглощения ЯМР. Ширина наблюдаемой линии, измеренная на половине макс. интенсивности и выраженная в Гц, наз. шириной линии ЯМР. Разрешение спектра ЯМР - миним. ширина линии ЯМР, к-рую позволяет наблюдать данный спектрометр. Скорость прохождения - скорость (в Гц/с), с к-рой изменяется напряженность магн. поля или частота воздействующего на образец радиочастотного излучения при получении спектра ЯМР.
Схема спектрометра ЯМР: 1 - катушка с образцом; 2 - полюса магнита; 3 -генератор радиочастотного поля; 4 -усилитель и детектор; 5 - генератор модулирующего напряжения; 6 - катушки модуляции поля В 0; 7 - осциллограф.
Поглощенную энергию система перераспределяет внутри себя (т. наз. спин-спиновая, или поперечная релаксация; характеристич. время Т 2) и отдает в окружающую среду (спин-решеточная релаксация, время релаксации Т 1). Времена Т 1 и Т 2 несут информацию о межъядерных расстояниях и временах корреляции разл. мол. движений. Измерения зависимости Т 1 и Т 2 от т-ры и частоты v0 дают информацию о характере теплового движения, хим. равновесиях, фазовых переходах и др. В твердых телах с жесткой решеткой Т 2 =10 мкс, а Т 1 > 103 с, т. к. регулярный механизм спин-решеточной релаксации отсутствует и релаксация обусловлена парамагн. примесями. Из-за малости Т 2 естественная ширина линии ЯМР весьма велика (десятки кГц), их регистрация -область ЯМР широких линий. В жидкостях малой вязкости Т 1
T2 и измеряется секундами. Соотв. линии ЯМР имеют ширину порядка 10-1 Гц (ЯМР высокого разрешения). Для неискаженного воспроизведения формы линии надо проходить через линию шириной 0,1 Гц в течение 100 с. Это накладывает существенные ограничения на чувствительность спектрометров ЯМР.
Основной параметр спектра ЯМР - хим. сдвиг- взятое с соответствующим знаком отношение разности частот наблюдаемого сигнала ЯМР и нек-рого условно выбранного эталонного сигнала к.-л. стандарта к частоте эталонного сигнала (выражается в миллионных долях, м. д.). Хим. сдвиги ЯМР измеряют в безразмерных величинахотсчитанных от пика эталонного сигнала. Если стандарт дает сигнал на частоте v0, то
В зависимости от природы исследуемых ядер различают протонный ЯМР, или ПМР, и ЯМР 13 С (таблицы величин хим. сдвигов приведены на форзацах тома),. ЯМР 19F (см. Фторорганические соединения), ЯМР 31 Р (см. Фосфорорганические соединения )и т. д. Величины
обладают существенной характеристичностью и позволяют определять по спектрам ЯМР наличие определенных мол. фрагментов. Соответствующие данные о хим. сдвигах разл. ядер публикуются в справочных и учебных пособиях, а также заносятся в базы данных, к-рыми снабжаются совр. спектрометры ЯМР. В рядах близких по строению соединений хим. сдвиг прямо пропорционален электронной плотности на соответствующих ядрах.
Общепринятый стандарт для ПМР и ЯМР 13 С - тетраметилсилан (ТМС). Стандарт м. б. растворен в исследуемом р-ре (внутр. эталон) или помещен, напр., в запаянный капилляр, находящийся внутри ампулы с образцом (внеш. эталон). В качестве р-рителей могут использоваться лишь такие, чье собственное поглощение не перекрывается с областью, представляющей интерес для исследования. Для ПМР лучшие р-рители - те, что не содержат протонов (СС14, CDC13, CS2, D2O и др.).
В многоатомных молекулах ядра одинаковых атомов, занимающих химически неэквивалентные положения, имеют различающиеся хим. сдвиги, обусловленные различием магн. экранирования ядер валентными электронами (такие ядра наз. анизохронными). Для i-го ядрагде
- постоянная диамагн. экранирования, измеряемая в м. д. Для протонов типичный интервал изменений
- до 20 м. д., для более тяжелых ядер эти интервалы на 2-3 порядка больше.
Важный параметр спектров ЯМР - константа спин-спинового взаимод. (константа ССВ) - мера непрямого ССВ между разл. магн. ядрами одной молекулы (см. Спин-спиновое взаимодействие); выражается в Гц.
Взаимод. ядерных спинов со спинами электронов, содержащимися в молекуле между ядрами i и j, приводят к взаимной ориентации этих ядер в поле В 0 (ССВ). При достаточном разрешенииССВ приводит к дополнит. мультиплетности линий, отвечающих определенным значениям хим. сдвигов:
где
ij - константы ССВ;ij -> величины, значения к-рых определяются спинами ядер iи j, симметрией соответствующего мол. фрагмента, диэдральными углами между хим. связями и числом этих связей между ядрами, участвующими в ССВ.
Если хим. сдвиги достаточно велики, т. е. minmax (
ij ), то ССВ проявляются в виде простых мультиплетов с биномиальным распределением интенсивностей (спектры первого порядка). Так в этильной группе сигнал метильных протонов проявляется в виде триплета с соотношением интенсивностей 1:2:1, а сигнал метиленовых протонов - в виде квадруплета с соотношением интенсивностей 1:3:3:1. В спектрах ЯМР 13 С метиновые группы - дублеты (1:1), а метиленовые и метильные - соотв. триплеты и квадруплеты, но с большими, чем в протонных спектpax, значениями констант ССВ. Хим. сдвиги в спектрах первого порядка равны интервалам между центрами мультиплетов, аij - расстояниям между соседними пиками мультиплета. Если условие первого порядка не выполняется, то спектры становятся сложными: в них ни один интервал, вообще говоря, не равен нини
ij . Точные значения параметров спектров получают из квантовомех. расчетов. Соответствующие программы входят в мат. обеспечение совр. спектрометров ЯМР. Информативность хим. сдвигов и констант ССВ превратила спектроскопию ЯМР высокого разрешения в один из важнейших методов качеств. и количеств. анализа сложных смесей, систем, препаратов и композиций, а также исследования строения и реакц. способности молекул. При изучении конформаций, вырожденных и др. динамич. систем, геом. структуры белковых молекул в р-ре, при неразрушающем локальном хим. анализе живых организмов и т. п. возможности методов ЯМР уникальны.Ядерная намагниченность в-ва. В соответствии с распределением Больцмана в двухуровневой спин-системе из N спинов отношение числа спинов
+ на нижнем уровне к числу спинов- на верхнем уровне равногде k - постоянная Больцмана; Т - т-ра. При В 0 =1 Тл и Т=300 К для протонов отношение
+/N-.= > 1,00005. Это отношение и определяет величину ядерной намагниченности в-ва, помещенного в поле B0. Магн. момент m каждого ядра совершает прецессионное движение относительно оси z, вдоль к-рой направлено поле B0; частота этого движения равна частоте ЯМР. Сумма проекций прецессирующих ядерных моментов на ось z образует макроскопич. намагниченность в-ваMz= 1018
В плоскости ху, перпендикулярной оси z, проекции векторов из-за случайности фаз прецессии равны нулю: М xy =>0. Поглощение энергии при ЯМР означает, что в единицу времени с нижнего уровня на верхний переходит больше спинов, чем в обратном направлении, т. е. разность населенностей
+ Ч- убывает (нагрев спин-системы, насыщение ЯМР). При насыщении в стационарном режиме намагниченность системы может сильно возрасти. Это - т. наз. эффект Оверхаузера, для ядер обозначаемый NOE (Nuclear Overhauser effect), к-рый широко применяется для повышения чувствительности, а также для оценки межъядерных расстояний при изучении мол. геометрии методами спектроскопии ЯМР.Векторная модель ЯМР. При регистрации ЯМР на образец накладывают радиочастотное поле
, действующее в плоскости ху. В этой плоскости поле В 1 можно рассматривать как два вектора с амплитудами В 1т/2, вращающихся с частотой
в противоположных направлениях. Вводят вращающуюся систему координат x'y'z, ось х' к-рой совпадает с вектором В 1т/2, вращающимся в том же направлении, что и векторы
Его воздействие вызывает изменение угла при вершине конуса прецессии ядерных магн. моментов; ядерная намагниченность М z начинает зависеть от времени, а в плоскости х'у' появляется отличная от нуля проекция ядерной намагниченности. В неподвижной системе координат эта проекция вращается с частотой
т. е. в катушке индуктивности наводится радиочастотное напряжение, к-рое после детектирования и дает сигнал ЯМР - ф-цию ядерной намагниченности от частоты
различают медленное изменение (свип-режим) и импульсный ЯМР. Реальное сложное движение вектора ядерной намагниченности создает в плоскости х'у' два независимых сигнала: М х,> (синфазный с радиочастотным напряжением В 1 )и М у' (сдвинутый относительно B1 по фазе на 90
Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.