ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ


ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ
,

изучает зависимости между составом и св-вами макроскопич. систем, составленных из неск. исходных в-в (компонентов). Для Ф.-х. а. характерно представление этих зависимостей графически, в виде диаграммы состав-свойство; применяют также таблицы числовых данных и аналит. записи. T. к. св-ва системы зависят не только от ее состава, но и от др. факторов, определяющих состояние системы,- давления, т-ры, степени дисперсности, на-пряженностей гравитац. и электромагн. полей, а также времени наблюдения,- то в общей форме говорят о диаграммах фактор равновесия - св-во, или о физ.-хим. (химических) диаграммах. На этих диаграммах все хим. процессы, происходящие в системах при изменении к.-л. фактора равновесия, как то - образование и распад хим. соед., появление и исчезновение твердых и (или) жидких р-ров и т. п., выражаются как геом. изменения комплекса линий, пов-стей и точек, к-рый образует диаграмму. Поэтому анализ геометрии диаграмм позволяет делать заключения о соответственных процессах в системе.

Два осн. принципа Ф.-х. а. были сформулированы Н. С. Курнаковым. Согласно принципу соответствия, каждой совокупности фаз, находящихся в данной системе в равновесии в соответствии с фаз правилом, на диаграмме отвечает определенный геом. образ. На основании этого принципа Н. С. Курнаков определил Ф.-х. а. как геом. метод исследования хим. превращений.

Второй осн. принцип Ф.-х. а., наз. принципом непрерывности, формулируется след. образом: при непрерывном изменении параметров, определяющих состояние системы, св-ва отдельных ее фаз изменяются непрерывно. Св-ва же системы в целом изменяются также непрерывно, но при условии, что не возникают новые фазы и не исчезают старые; если же число фаз меняется, то изменяются и св-ва системы, причем, как правило, скачкообразно.

Третий принцип Ф.-х. а. был предложен Я. Г. Горощенко. Он утверждает, что любой набор компонентов, независимо от их числа и физ.-хим. св-в, может составить систему (принцип совместимости). Из него следует, что диаграмма любой системы содержит все элементы частных систем (подсистем), из к-рых она составлена. В общей системе элементы трансляции частных систем совмещаются с геом. образами на хим. диаграмме, возникающими как отображение процессов, протекающих с участием всех компонентов общей системы.

Одним из осн. направлений теории Ф.-х. а. является изучение топологии хим. диаграммы. Преимущество Ф.-х. а. как метода исследования заключается в том, что он не требует выделения продукта хим. взаимодействия компонентов из реакционной смеси, вследствие чего метод позволяет исследовать хим. превращения в р-рах, сплавах (особенно металлических), стеклах и т. п. объектах, к-рые практически невозможно исследовать с применением классич. препара-тивно-синтетич. методов. Широкое использование Ф.-х. а. получил при исследовании комплексообразования в р-рах с целью выяснения состава и определения устойчивости хим. соединений. График состав - св-во имеет обычно один экстремум, как правило, максимум. В простых случаях максимум соответствует молярному отношению компонентов системы, представляющему стехиометрию комплексного соед. В общем случае точки экстремумов на кривых (или пов-стях) св-в, а также точки перегибов не отвечают составу образующихся в системе хим. соед., но в пределе, когда степень диссоциации хим. соед. равна нулю, непрерывная кривая зависимости св-ва от состава распадается на две ветви, пересекающиеся в сингулярной точке, абсцисса к-рой отвечает составу хим. соединения.

Диаграммы состав - св-во лежат в основе аналит. методов (колориметрия, потенциометрия и др.). Для использования к.-л. св-ва в аналит. целях желательно, чтобы существовала аддитивная зависимость значений этого св-ва от состава. Поэтому важное значение уделяется рациональному выбору св-ва (в частности, прямого или обратного, напр. электропроводности или электросопротивления), а также выбору способа выражения концентрации компонентов системы (массовые, молярные, объемные, эквивалентные доли или проценты). В совр. Ф.-х. а. число используемых св-в системы составляет много десятков. В принципе можно применять любое св-во, к-рое м. б. измерено или вычислено. Напр., при решении теоретич. вопросов, в частности при выводе разл. типов диаграмм, используют к.-л. термодинамич. потенциал, к-рый не м. б. измерен непосредственно. При выборе св-ва необходимо учитывать как возможную точность определения его значений, так и его чувствительность к происходящим в системе хим. превращениям. Напр., плотность в-ва м. б. определена с большой точностью, но она малочувствительна к образованию хим. соед., тогда как твердость чутко реагирует на хим. взаимод. в системе, однако мала точность ее определения. Для Ф.-х. а. характерно параллельное исследование и сопоставление результатов определения неск. св-в, напр. электропроводности, твердости.

Среди хим. диаграмм особое место занимают диаграммы плавления (плавкости), диаграммы р-римости, диаграммы давления пара, к-рые являются вариантами диаграммы состояния. На таких диаграммах любая точка, независимо от того, находится она на к.-л. линии или пов-сти диаграммы или нет, описывает состояние системы. Диаграмма состояния есть основа диаграммы любого св-ва, т. к. значение каждого из св-в системы зависит в общем случае и от состава, и от т-ры, и от давления, т. е. от всех факторов равновесия, соотношение между к-рыми дает диаграмма состояния. Все шире исследуют и используют на практике диаграммы, показывающие зависимость состояния системы одновременно от двух важнейших факторов равновесия - давления и т-ры. Эти диаграммы обозначают как р-Т-х-диаграммы ( х - молярная доля компонента). Даже для двойной системы построение р-Т- х- диаг-раммы требует использования пространств, системы координат, поэтому диаграмма состав - св-во для двойных и более сложных систем строятся и исследуются, как правило, при постоянных давлении, т-ре, др. внеш. факторах. Сложность построения хим. диаграмм потребовала развития соответствующих методов графич. изображения.

Ф.-х. а. способствовал решению мн. теоретич. проблем химии, в частности, созданию теории строения хим. соед. переменного состава (см. Нестехиометрия). Ф.-х. а. является основой создания новых и модифицирования известных материалов - сплавов, полупроводников, стекол, керамики и т. д. путем, напр., легирования. На Ф.-х. а. и физ.-хим. диаграммах базируются многие технол. процессы, связанные, в частности, с кристаллизацией, ректификацией, экстракцией и т. п., т. е. с разделением фаз. Подобные диаграммы указывают, в частности, на условия выделения соед., выращивания монокристаллов. T. наз. метод остаточных концентраций позволяет исследовать р-ции осаждения хим. соед. в результате взаимод. в р-рах. По этому методу состав твердых фаз -продуктов р-ции - определяется разностью между содержанием реагирующих компонентов в ряду исходных смесей и в соответствующих равновесных р-рах по окончании взаимод. При этом строится диаграмма зависимости равновесных кон-центраций реагирующих компонентов в р-ре от отношения между ними в исходных смесях. Параллельно обычно изменяют рН, электропроводность р-ров, поглощение света суспензией, др. св-ва.

В классич. Ф.-х. а. системы исследовались только в равновесном состоянии. Приближение к равновесию часто требует большого времени либо вообще трудно достижимо, поэтому для практич. использования метода необходимо изучение систем в неравновесном состоянии, в частности в процессе приближения к равновесию. Строго говоря, неравновесными считаются системы, в к-рых участвуют метастаоильные модификации в-в, способные существовать сколь угодно продолжительное время. Техн. применение материалов в неравновесном состоянии, напр. стеклообразных металлич. сплавов, композиционных материалов, стеклообразных полупроводников, привело к необходимости изучения диаграмм состав -св-во для заведомо неравновесных систем.

Ф.-х. а. оказался плодотворным для исследования и синтеза новых соед. в результате необратимых р-ций в неравновесных системах. Исследование систем в процессе перехода в равновесное состояние позволяет установить существование не только конечных продуктов р-ции, но и промежут. в-в, а также образующихся нестойких в-в. Кинетич. фактор, т. е. скорость превращения (скорость приближения к равновесию), теперь рассматривается на равных правах с др. критериями и др. св-вами. На св-ва системы существенное влияние оказывает ее дисперсность - мол.-дисперсное распределение компонентов (субмикроскопич. состояние), состояние коллоидного растворения и т. д., вплоть до монокристаллич. состояния. Диаграммы состав - структура - степень дисперсности - св-во определяют особенности совр. изучения в Ф.-х. а.

Развитие ЭВМ привело к тому, что в Ф.-х. а. значительно усилилась роль аналит. формы выражения зависимостей св-в системы от ее состава. Это облегчает хранение информации (совр. компьютерные системы позволяют собирать и хранить справочный материал по хим. диаграммам и в графич. виде) и, в особенности, мат. обработку результатов, к-рая прежде применялась в осн. лишь при исследовании комплексообра-зования в р-рах. В известной мере использование совр. вычислит, техники позволяет преодолеть ограниченность Ф.-х. а., заключающуюся в том, что он устанавливает, какие именно хим. превращения имеют место в системе, но не дает ответа на вопросы, связанные с причиной и механизмом этих превращений. Расчетные методы позволяют извлечь дополнит. информацию из хим. диаграмм, напр. определять степень диссоциации хим. соед. в расплаве на основании анализа кривизны линии ликвидуса для двойных систем или изменение свободной энергии системы при обмене солей, исходя из формы изотерм пов-сти ликвидуса для тройных взаимных систем. Привлечение разл. теорий твердого тела, моделей жидкости и состояний газовых смесей, наряду с обобщением эксперим. данных, позволяет получать физ.-хим. диаграммы (или их элементы) расчетным путем.

Исторический очерк. Осн. идея Ф.-х. а. была высказана М. В. Ломоносовым (1752), первые попытки установить образование в системе хим. соед., исходя из зависимости ее св-в от состава, относятся к нач. 19 в. В сер. 19 в. работами П. П. Аносова (1831), Г. К. Сорби (1864), Д. К. Чернова (1869) были заложены основы металловедения; Д. И. Менделеевым впервые был проведен геом. анализ диаграмм состав - св-во на примере изучения гидратов серной к-ты. К этому же периоду относятся работы В. Ф. Алексеева о взаимной р-римости жидкостей, Д. П. Коновалова - об упругости пара р-ров (см. Коновалова законы), И. Ф. Шредера - о температурной зависимости р-римости (см. Pacmвopuмость).Ha рубеже 19-20 вв. в связи с потребностями техники началось бурное развитие Ф.-х. а. (А. Ле Шателье, Я. Вант Гофф, Ф. Осмонд, У. Робертс-Остен, Я. Ван Лаар и др.). Основополагающие теоретич. и эксперим. работы совр. Ф.-х. а. принадлежат Н. С. Курнакову. Им были объединены в одно направление изучение сплавов и однородных р-ров и предложен термин "Ф.-х. а." (1913). Исследования комплексообразования в р-рах с работами И. И. Остромысленского (1911), П. Жоба (1928) и разработкой методов определения состава хим. соед. и констант их устойчивости по данным измерений разл. физ. св-в р-ров.

Лит.: Курнаков Н. С., Введение в физико-химический анализ, 4 изд., М.-Л., 1940; Аносов В. Я., Погодин С. А., Основные начала физико химического анализа, М.-Л., 1947; Соловьев Ю. И., Очерки истории физико-химического анализа, M., 1955; Бабко А. К., Физико-химический анализ комплексных соединений в растворах, К., 1955; Михеева В. И., Метод физико-химического анализа в неорганическом синтезе, M., 1975; Ано-совВ. Я., Озерова М. И., Фиалков Ю. Л., Основы физико-химического анализа, M., 1976; Г о r о щ е н к о Я. Г., Физико-химический анализ гомогенных и гетерогенных систем, К., 1978; Черногоренко В. Б., Прядко Л. Ф., "Ж. неорг. химии", 1982, т. 27, № 6, с. 1527-30; Глазов В. М., "Изв. АН СССР. Сер. неорг. материалы", 1984, т. 20, № 6, с. 925-36; ФедоровП. И., Федоров П. П., Др о б о т Д. В., Физико-химический анализ безводных солевых систем, M., 1987. П. И. Федоров.


Химическая энциклопедия. — М.: Советская энциклопедия. . 1988.

Смотреть что такое "ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ" в других словарях:

  • Физико-химический анализ — комплекс методов анализа физико химических систем путем построения и геометрического анализа диаграмм состояния и диаграмм состав свойство. Этот метод позволяет обнаружить существование соединений (например, медистого золота CuAu), существование… …   Википедия

  • ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ — метод исследования термодинамически равновесных систем на основании анализа графической зависимости какого либо физического свойства системы от ее состава (см. Диаграмма состояния). Позоляет установить наличие и состав химических соединений без… …   Большой Энциклопедический словарь

  • физико-химический анализ — Совокупность методов исследования зависимости свойств металлов, сплавов, шлаков и т.п. от параметров состояния (давления, темп ры и др.). Ф. х. а. сформировался в начале XX в. Его основоположник акад. Н. С. Курнаков. Ф.х.а. изучает природу и… …   Справочник технического переводчика

  • физико-химический анализ — – совокупность методов анализа, при которых исследуются зависимости свойств равновесной системы от параметров состояния. Словарь по аналитической химии [3] …   Химические термины

  • физико-химический анализ — [physicochemical analysis] совокупность методов исследования зависимости свойств металлов, сплавов, шлаков и т. п. от параметров состояния (давления, температуры и др.). Физико химический анализ сформировался в начале XX в. Его основоположник… …   Энциклопедический словарь по металлургии

  • Физико-химический анализ —         метод исследования физико химических систем, посредством которого устанавливают характер взаимодействия компонентов системы на основе изучения соотношений между её физическими свойствами и составом. Основы Ф. х. а. заложены в конце 19 в.… …   Большая советская энциклопедия

  • физико-химический анализ — метод исследования термодинамически равновесных систем на основании анализа графической зависимости какого либо физического свойства системы от её состава (см. Диаграмма состояния). Позволяет установить наличие и состав фаз, образование в системе …   Энциклопедический словарь

  • физико-химический анализ — fizikinė cheminė analizė statusas T sritis Standartizacija ir metrologija apibrėžtis Pusiausvirųjų cheminių sistemų tyrimo metodai, pagrįsti kurio nors fizikinio parametro matavimu ir priklausomybe nuo sistemos sudėties. atitikmenys: angl.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • физико-химический анализ — fizikocheminė analizė statusas T sritis chemija apibrėžtis Pusiausvirųjų cheminių sistemų tyrimo metodai, pagrįsti kurios nors fizikinės savybės matavimu ir priklausomybe nuo sistemos sudėties. atitikmenys: angl. physicochemical analysis rus.… …   Chemijos terminų aiškinamasis žodynas

  • физико-химический анализ — fizikinė cheminė analizė statusas T sritis fizika atitikmenys: angl. physicochemical analysis vok. physikalisch chemische Analyse, f rus. физико химический анализ, m pranc. analyse par chimie physique, f …   Fizikos terminų žodynas

Книги

Другие книги по запросу «ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ» >>