- СПИН
(англ. spin, букв.-вращение), собств. момент кол-ва движения элементарной частицы (электрона, протона и т. п.). Имеет квантовую природу и не связан с к.-л. перемещениями частицы, в т. ч. не зависит от наличия или отсутствия у нее орбитального (углового) момента кол-ва движения. Пространств. квантование С. определяет квантовое число s: проекция спина Sчастицы на выбранное направление
z >может принимать значения, измеряемые в единицах постоянной Планка Ри равные Ч sР, ЧsР + Р,..., sР. Квантовое число sназ. спиновым квантовым числом или просто С.; оно равно для электрона, протона, нейтрона, нейтрино 1/2, для фотона 1, для p- и К- мезонов 0.
С. наз. также собств. момент кол-ва движения атомного ядра, атома, мол. системы; в этом случае С. системы определяется как векторная сумма С. отдельных частиц: Ss = S. Так, С. ядра равен целому или полуцелому числу (обозначается обычно I) в зависимости от того, включает ли ядро четное или нечетное число протонов и нейтронов. Напр., для 1 Н I = 1/2, для 10 В I = 3, для 11 В I = 3/2, для 17 О I = 5/2, для 16 О I = 0. Для атома Не в основном состоянии полный электронный С. S = 0, в первом возбужденном состоянии S= 1. В совр. теоретич. физике, гл. обр. в теории элементарных частиц, С.-часто называют полный момент кол-ва движения частицы, равный сумме орбитального и собств. моментов.
Концепция С. введена в 1925 Дж. Уленбеком и С. Гаудс-митом, к-рые для интерпретации эксперим. данных о расщеплении пучка атомов серебра в магн. поле предположили, что электрон можно рассматривать Как вращающийся вокруг своей оси волчок с проекцией на направление поля, равной В том же году В. Паули ввел понятие С. в математич. аппарат нерелятивистской квантовой механики и сформулировал принцип запрета, утверждающий, что две тождеств. частицы с полуцелым спином не могут одновременно находиться в системе в одном и том же квантовом состоянии (см. Паули принцип). Согласно подходу В. Паули, существуют операторы s2 и sz, к-рые обладают собств. значениями Р 2s(s +>1) и Рsz соотв. и действуют нат. наз. спиновые части волновой ф-ции a и b (спин-функции) так же, как операторы орбитального момента кол-ва движения 2 и z действуют на пространств. часть волновой ф-ции Y(r), где r-радиус-вектор частицы. Операторы
2иzподчиняются тем же правилам коммутации, что и операторы 2 и z.
Уравнение Дирака. В 1928 П. Дираком было показано, что существование С. следует из релятивистского (с учетом конечности скорости света) решения задачи о движении электрона в электромагн. поле. Ур-ние Дирака имеет формально такой же вид, что и ур-ние Шрёдингера:
iРdYD/
- D
YD
(t-время). Оператор
D,> однако, линеен по компонентам импульса электрона р, и если напряженность поля характеризуется векторным потенциалом А с компонентами А х, А у, А z и скалярным потенциалом V, то
где еи m-заряд и масса покоя электрона, с-скорость света. Операторы р х, р у, р z имеют обычный вид:
коэффициенты ax, a у, az -матрицы размера 4 x 4 (матрицы Дирака), 1-единичная матрица. Релятивистская волновая ф-ция YD для электрона, как и для любой другой частицы с С. 1/2, должна быть 4-компонентной; обычно это выражают след. записью:
Ур-ние Дирака фактически является системой 4 ур-ний для 4 ф-ций Fi и Xi, зависящих от координат х, у и zи времени t.
Существование С. как собств. момента кол-ва движения электрона следует из того, что в отсутствие момента внеш. сил оператор
D коммутирует не с оператором орбитального момента L,как оператор Hв ур-нии Шрёдингера, а с оператором J = L+ S. Это значит, что не сохраняется орбитальный момент кол-ва движения своб. электрона, а сохраняется лишь сумма орбитального и нек-рого дополнит. момента-спина.
Ур-ние Дирака существенно упрощается при малых (относительно скорости света) скоростях uклассич. движения электрона, когда В нерелятивистском пределе, когда масса электрона становится равной массе покоя, X1 и Х 2 устремляются к нулю, а оператор
D > переходит в т. наз. оператор Брейта-Паули:
где s
Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.