РАДИКАЛЫ СВОБОДНЫЕ

РАДИКАЛЫ СВОБОДНЫЕ

хим. частицы с неспаренными электронами на внеш. орбиталях; обладают парамагнетизмом и высокой реакц. способностью.

Р. с. могут быть короткоживущими (время жизни доли секунды) или долгоживущими (до неск. лет), нейтральными или заряженными (см. Ион-радикалы),иметь один или большее число неспаренцых электронов (напр., бирадикалы), быть твердыми, жидкими или газообразными в-вами. Стабильность Р. с. определяется скоростями их рекомбинации или диспропорционирования.

Все радикалы условно делят на две группы -p- и s-элект-ронные. У первых неспаренный электрон преим. локализован на 2p- или p-орбитали, а соответствующие атомные ядра находятся в узловой плоскости этой орбитали. К p-элект-ронным относятся алкильные, аллильный и бензильный радикалы, а также ион-радикалы ароматич. углеводородов, циклооктатетраена, дивинила и подобных частиц, напр.:

[(CH3)2NC6H4NH2]+; [(NC)2C=C(CN)2]-:

У s-электронных Р. с. неспаренный электрон преим. локализован на s-орбитали таким образом, что радикал практически сохраняет электронную конфигурацию исходной молекулы. К таким Р. с. относят фенильный, ванильный и формильный радикалы, а также карбоксильный и пиридильный ион-радикалы (соотв.4031-6.jpg 4031-7.jpg к-рые имеют плоскую конфигурацию. В эту же группу Р. с. входят многочисл. хим. частицы с пирамидальным парамагнитным центром (напр.,4031-8.jpg 4031-9.jpg

Короткоживущие Р. с. К таким радикалам относятся атомы и сложные хим. частицы с локализованными неспаренными электронами (своб. валентностями), напр.4031-10.jpg

4031-11.jpg Для стабилизации таких Р. с. используют низкие т-ры, применяя в качестве хладагентов жидкие Не, Н 2, N2 или Аr. В застеклованных инертных р-рителях при низких т-рах Р. с. стабилизируются, находясь в т. наз. замороженном состоянии (см. также Клетки эффект). В разл. твердых прир. и синтетич. материалах (напр., в орг. и неорг. стеклах) Р. с. стабилизируются в результате уменьшения диффузионной подвижности.

Для генерирования короткоживущих Р. с. используют разл. физ. и хим. методы воздействия на в-во, напр. фотолиз, радиолиз, пиролиз, электролиз.

Образование Р. с. при электролизе может осуществляться в условиях Кольбе реакции, напр.:

4032-1.jpg

При фотолизе энергия светового кванта, поглощаемого в-вом, должна быть равной или превышать энергию диссоциации (E д) хим. связи молекулы, напр.:

4032-2.jpg

В условиях импульсного фотолиза генерируют короткожи-вущие Р. с., выход к-рых может достигать 100%.

Легкость термин, распада молекул на Р. с. также зависит от энергии диссоциации соответствующей хим. связи. В качестве источников нестабильных Р. с. часто используют орг. пероксиды, напр. бензоилпероксид, трет -бутилгидроперок-сид, кумилпероксид, трет -бутилпероксид (см. Инициаторы радикальные). Последний, напр., удобен для генерирования Р. с. в р-рах при умеренных т-рах:

4032-3.jpg

mpem -Бутоксильные радикалы легко осуществляют отрыв атома Н от молекул углеводородов, поскольку связь ОЧН в mpem -бутаноле прочнее связи СЧН:

4032-4.jpg

Сольватация Р. с. в р-рах обычно изменяет их электронное строение, геометрию и реакц. способность. Нек-рые Р. с. могут существовать только в р-рах, находясь в термодина-мич. равновесии с молекулами. Напр., при растворении в воде соли Фреми образуется темно-фиолетовый р-р гидратир. анион-радикала 4032-5.jpg св-ва к-рого на воздухе при 25°С практически не изменяются в течение мн. часов.

Пример мол.-индуцир. генерирования Р. с.-спонтанная полимеризациястирола:

4032-6.jpg

Долгоживущие Р. с. Такие радикалы обладают сильно делокализованными неспаренными электронами и обычно стерически экранированными реакц. центрами.

Очищенные образцы нек-рых арилметильных радикалов представляют собой устойчивые на воздухе при 25 °С ярко окрашенные кристаллы или аморфные в-ва с содержанием неспаренных электронов ок. 6-10 спин/моль (показатель, характеризующий содержание парамагнитных частиц). Уникальной термостабильностью и хим. стойкостью обладают 1,3- бис -(бифенилен)-2-(4-изопропилфенил) аллил - кристаллы ярко-зеленого цвета (т. пл. 189°С) ,и т. наз. инертные радикалы, напр. (С 6 С15)2 СС1, (С 6 С15)3 С, (С 6 С15)2 СС 6 С14 ОН-высокоплавкие в-ва оранжево-красного цвета.

Р. с. этого типа образуют сольватные комплексы, к-рые существуют в р-рах в термодинамич. равновесии с молеку-лами-димерами. Таким образом ведут себя трифенилметил и его многочисл. аналоги (см. табл.). Для сложных сопряженных систем на состояние равновесия в р-рах между Р. с. и их димерами, кроме сольватац. факторов, оказывают влияние мезомерные и стерич. эффекты.

4032-7.jpg

Ароксильные радикалы представляют собой интермедиаты окисления фенолов. Известны лишь единичные примеры высокоочищенных в-в этого типа, напр. гальвиноксильный радикал (ф-ла I; т. пл. 158°С) и индофеноксил (II; т. пл. 136°С).

4032-8.jpg4032-9.jpg4032-10.jpg

Ароксильные Р. с. лишь условно можно назвать долгоживу-щими, т. к. в норм. условиях они быстро реагируют с кислородом, и поэтому операции с такими в-вами обычно проводят в инертной атмосфере или с использованием вакуумной техники.

Устойчивые на воздухе при 25 °С Р. с. аминильного ряда обычно получают путем окисления вторичных аминов. Известны, напр., темно-синие., кристаллы 1,3,6,8-тетра- трет -бутил-9-карбазила (III; т. пл. 145°С) и соед. IV (т. пл. 216 °С), а также вишнево-красные замещенные феназиниль-ные Р. с. (V).

4032-11.jpg4032-12.jpg4032-13.jpg

Долгоживущие гидразильные радикалы представляют собой устойчивые на воздухе интенсивно окрашенные кристаллы. Типичное в-во этой группы - N,N- -дифенил-N'-пикрил-гидразильный радикал(VI; фиолетовые кристаллы, т. пл. 137-138 °С).

Выраженная тенденция Р. с. этой группы к сольватации создает трудности при получении очищенных образцов этих в-в с постоянными физ.-хим. характеристиками.

4032-14.jpg4032-15.jpg

Вердазильные радикалы относятся к числу наиб. стабильных орг. парамагнетиков. Периоды полупревращения нек-рых из них на воздухе при 25 °С составляют мн. годы. Характерный представитель этой группы Р. с.- 1,3,5-три-фенилвердазил (VII; темно-зеленые кристаллы, т. пл. 143 °С).

Нитроксильные радикалы традиционно наз. азотокисями или нитроксидами из-за их формального сходства с тривиальными оксидами аминов. Представитель этой группы-т. наз. порфирексид представляет собой р-римые в воде кир-пично-красные кристаллы; его строение м. б. представлено суперпозицией неск. валентно-таутомерных структур, напр.:

4032-16.jpg

Выраженная делокализация неспаренного электрона (тер-модинамич. фактор) и стерич. экранирование реакц. центров (кинетич. фактор) объясняют стабильность в норм. условиях мн. нитроксильных Р. с. ароматич., жирно-ароматич. и гете-роциклич. типа таких, напр., как 4,4'-диметоксидифенилнит-роксил (VIII; т. пл. 161 °С), 2,6-диметоксифенил- трет -бу-тилнитроксил (IX; т. пл. 102°С) и нитроксиднитроксильный радикал имидазолинового ряда (X; т. пл. 100 °С).

4032-17.jpg

Нек-рые нитроксильные Р. с. несмотря на наличие сильно локализованного неспаренного электрона исключительно стабильны на воздухе, напр. темно-красный 2,2,6,6-тетра-метилпиперидин-1-оксил (XI; т. пл.38 °С) и желтый 2,2,5,5-тетраметил-3-карбоксипирролин-1-оксил (XII; т. пл. 211 °С).

4032-18.jpg

Иминоксильные радикалы (алкилидениминоксильные радикалы) представляют собой частицы общей ф-лы 4032-19.jpg напр. ди- трет -бутилметилениминоксил 4032-20.jpg (жидкость бирюзового цвета; т. пл. Ч21 °С,4032-21.jpg 1,4452). Радикалы этого типа могут существовать в виде двух изомеров -син и анти:

4032-22.jpg

Синтез долгоживущих Р. с. осуществляют разнообразными методами, включая одноэлектронные окислит.-восстано-вит. и региоселективные р-ции без затрагивания парамагнитного центра (подробнее см. статьи об отдельных группах долгоживущих Р. а). Т. обр., напр., получают спин-меченые реагенты, высокомол. радикалы и др.

Реакционная способность Р. с. Определяется гл. обр. наличием своб. валентности, благодаря к-рой они могут вступать в р-ции радикального замещения, присоединения, распада, изомеризации, рекомбинации и диспропорционирования (см. Радикальные реакции).

Необычными являются нерадикальные региоселективные р-ции, в к-рых неспаренные электроны не участвуют в образовании новых хим. связей (р-ции без затрагивания парамагнитного центра). Такие р-ции особенно характерны для нитроксильных радикалов.

Методы обнаружения и анализа. Осн. специфич. методы обнаружения и исследования строения Р. с. основаны на использовании спектроскопии электронного парамагнитного резонанса. Спектры ЭПР дают информацию о хим. строении Р. с., степени делокализации неспаренного электрона, о распределении спиновой плотности по разл. атомам частицы. Методом ЭПР можно обнаружить радикалы в концентрации 10-9 моль/л.

Для изучения структур сложных Р. с. используют метод двойного электрон-ядерного резонанса (ДЭЯР). Р-ры с высокими концентрациями Р. с. могут быть исследованы с использованием спектров ЯМР (особенно когда константы сверхтонкого взаимод. в спектрах ЭПР малы). Для изучения гомолитич. распада молекул в р-рах, взаимод. радикальных пар и др. используют метод химической поляризации ядер

Для идентификации и исследования Р. с. используют также спектры в видимой и ультрафиолетовой областях, ИК спектры и спектры комбинац. рассеяния (часто в сочетании с импульсным фотолизом), а также масс-спсктрометрию.

Хим. методы исследования широко используют для определения долгоживущих Р. с. В качестве хим. индикаторов короткоживущих Р. с. можно использовать мономеры (напр., стирол), к-рые в присутствии парамагнитных частиц полимеризуются (метод Циглера).

Для идентификации и исследований короткоживущих Р. с. их превращают в долгоживущие (обычно в нитроксильные) при взаимод. парамагнитных частиц, напр., с нитронами или нитрозосоед. (т. наз. спиновых ловушек метод).

Короткоживущие Р. с. 4032-23.jpg можно определять с помощью C(NO2)4, к-рый при взаимод. с ними превращ. в нитроформ CH(NO2)3, существующий в водных р-рах в виде интенсивно окрашенного аниона. Последний количественно определяется колориметрич. методами.

Применение, нахождение в природе. Долгоживущие Р. с. (гл. обр. нитроксильные) находят широкое применение в качестве ингибиторов полимеризации и окисления разл. орг. материалов, напр. для стабилизации акрилонитрила, винил-ацетата, винилиденхлорида, стирола, фурфурола, СК и НК, жиров и масел. Их применяют также в молекулярно-биол. исследованиях в качестве спиновых меток и зондов (см. Липидные зонды, Спинового зонда метод), в судебно-мед. диагностике, аналит. химии, для повышения адгезии полимерных покрытий, при изготовлении фотоматериалов, в приборостроении, в геофизике и дефектоскопии твердых тел, напр. алмазов. Короткоживущие Р. с.-промежут. частицы, во мн. орг. р-циях (радикальное галогенирование и др.).

Контролируемое ферментами образование Р. с. в живых организмах происходит и в процессах нормальной жизнедеятельности, напр. при биосинтезе простагландинов, транспорте электронов в митохондриях, обезвреживании бактерий фагоцитирующими клетками. Образованием в организме активных Р. с. объясняют процессы старения. Различные Р. с. обнаружены в космосе.

Существование Р. с. постулировалось в 19 в. Первый долгоживущий Р. с. [трифенилметил (С 6 Н 5)3 С Х] обнаружен в р-ре в 1900 М. Гомбергом. В 1901 О. Пилоти и Б. Шверин получили нитроксильный радикал гетероциклич. природы порфирексид, но не идентифицировали его как Р. с. В 1911-22 Г. Виландом разработана химия ароматич. нитроксильных радикалов и диариламинильных радикалов.

Впервые алкильные радикалы (СН 3 и СН 3 СН 2) идентифицированы в 1929 Ф. Пакетом. В последующие годы развитие химии Р. с. было связано с открытием и использованием для идентификации радикалов метода ЭПР, а также с синтезом разл. групп долгоживущих Р. с.

Лит.: Бучаченко А. Л., Вассерман А. М., Стабильные радикалы, М., 1973; Вертц Дж., Болтон Дж., Теория и практические приложения метода ЭПР, пер. с англ., М., 1975; Походенко В. Д., Белодед А. А., Кошсч-ко В. Д., Окислительно-восстановительные реакции свободных радикалов, К., 1977; Розанцев Э. Г., Шолле В. Д., Органическая химия свободных радикалов, М., 1979; Нонхибел Д., Теддер Дж., Уолтов Дж., Радикалы, пер. с англ., М., 1982; Нитроксильные радикалы. Синтез, химия, приложения, под ред. Э. Г. Розанцева и Р. И. Жданова, М., 1987; Kaiser E., Kevan L., Radical ions, N. Y., 1968; Kochi J. K. (ed.), Free radicals, v. 1-2-4, N.Y., 1973-80; Polymer stabilization and degradation, Wash., 1985; Landolt - Bornstein, New Scries. Numerical data and functional relationships in science and technology. Group II, v. 9, 13, 17, В. 1977-1988. Э. Г. Розанцев.



Химическая энциклопедия. — М.: Советская энциклопедия. . 1988.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "РАДИКАЛЫ СВОБОДНЫЕ" в других словарях:

  • РАДИКАЛЫ СВОБОДНЫЕ — атомы или химические соединения с неспаренным электроном (обозначается жирной точкой), напр. . Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во многих химических реакциях. Некоторые радикалы свободные стабильны и …   Большой Энциклопедический словарь

  • РАДИКАЛЫ СВОБОДНЫЕ — (радикалы хим.) (1) неустойчивые высокоактивные частицы, образующиеся из молекул, главным образом органических соединений, подвергнутых воздействию высокой температуры, радиации, ультрафиолетового излучения, катализаторов и др., и обладающие… …   Большая политехническая энциклопедия

  • РАДИКАЛЫ СВОБОДНЫЕ — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… …   Современная энциклопедия

  • Радикалы свободные — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… …   Иллюстрированный энциклопедический словарь

  • радикалы свободные — атомы или химические соединения с неспаренным электроном (обозначается жирной точкой), например H, CH3, C(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы  промежуточные частицы во многих химических реакциях. Некоторые свободные… …   Энциклопедический словарь

  • Радикалы свободные — Свободные радикалы в химии  частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов. По другому определению свободный радикал  вид молекулы или атома, способный к независимому существованию (то есть обладающий… …   Википедия

  • Радикалы свободные —         кинетически независимые частицы, характеризующиеся наличием неспаренных электронов. Например, к неорганическим Р. с., имеющим на внешнем уровне один электрон (см. Атом, Валентность), относятся атомы водорода Н·, щелочных металлов (Na·, К· …   Большая советская энциклопедия

  • РАДИКАЛЫ СВОБОДНЫЕ — атомы или хим. соед. с неспаренным электроном (обозначается жирной точкой), напр. Н, СН3, С(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во мн. хим. реакциях. Нек рые Р. с. стабильны и выделены в индивид …   Естествознание. Энциклопедический словарь

  • РАДИКАЛЫ СВОБОДНЫЕ — частицы (атомы или атомные группы) с неспаренными электронами на внеш. атомных или молекулярных орбиталях. Образуются из молекул под действием нагревания, электромагн. излучения, потока частиц высоких энергий, в присутствии катализаторов. Могут… …   Большой энциклопедический политехнический словарь

  • СВОБОДНЫЕ РАДИКАЛЫ — см. Радикалы свободные …   Большой Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»