ПОВЕРХНОСТЬ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ

ПОВЕРХНОСТЬ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ

(ППЭ), потенциальная ф-ция (потенциал) взаимодействия атомных ядер в изолир. молекуле или хим. системе, состоящей из взаимодействующих атомов и (или) молекул. Система, содержащая Nатомов, в общем случае имеет z Ч3N Ч6 внутр. степеней свободы i(i= 1, 2,..., z), к-рые можно выбирать разл. способами. Потенциал Uядер атомов (т. е. ППЭ) является ф-цией этих степеней свободы: 3556-12.jpg . Он входит в ядерное ур-ние движения (эволюции) системы и наряду с оператором кинетич. энергии ядер T составляет ядерный гамильтониан H яд (см. Квантовая химия):

3556-13.jpg

В квантовохим. расчете ППЭ 3556-14.jpg для к-го электронного состояния находят решением электронного ур-ния Шрёдин-гера

3556-15.jpg

в к-ром электронный гамильтониан H эл и электронная волновая ф-ция 3556-16.jpg зависят от координат электронов n (пространственных и спиновых) как от переменных, а координаты ядер являются параметрами. В ур-нии (2) различие между n и i обозначено вертикальной чертой. Ур-ние (2) решается многократно для разл. совокупностей параметров i ,> т. е. для разл. фиксир. ядерных конфигураций. Получаемая в результате ППЭ Uk(i) наз. электронным термом [обычно если квантовое число kэлектронного состояния не указано, то назв. "ППЭ" относится к осн. состоянию k = 0, т. е. U(i) =U0(i)].

Соотношения (1) и (2) являются мат. выражением адиабатического приближения, в рамках к-рого сначала решается электронное ур-ние (2), а затем найденный электронный терм используется в качестве потенциальной энергии системы в ур-ниях движения с ядерным гамильтонианом (1). T. обр., понятие ППЭ связано с разделением электронного и ядерного движений, к-рое возможно благодаря тому, что в большинстве хим. систем ядерные движения гораздо медленнее электронных. В нек-рых случаях условия разделения электронных и ядерных переменных нарушаются (напр., в области сближения электронных термов) и тогда состояние системы не м. б. охарактеризовано с помощью единственной ППЭ (см. Яна-Теллера эффекты).

Понятие ППЭ применяют во мн. областях теоретич. химии (мол. спектроскопия, безызлучат. квантовые переходы, межмол. взаимодействия, конформац. анализ и др.). Наиб. плодотворно его применение в теории хим. р-ций.

ППЭ представляет собой многомерный геом. объект. Ее осн. элементы-стационарные точки (минимумы и седловые точки), хребты и долины - непосредственно связаны с описанием устойчивых состояний хим. системы и переходов между ними, т. е. хим. р-ций. Топографич. интерпретация очевидна для трехмерной ППЭ, когда Uзависит всего от двух координат q1 и q2.Ee можно распространить и на многомерные ППЭ. Стационарные точки на ППЭ удовлетворяют ур-ниям:

3556-17.jpg

Матрица вторых производных

3556-18.jpg

в минимумах имеет только положит. собств. значения. В седловых (перевальных) точках она имеет одно отрицат. собств. значение и (z Ч 1) положительных. Стационарные точки, в к-рых F имеет более одного отрицат. собств. значения, наз. седловыми точками высшего порядка (второго, третьего и т. д.) или, согласно топографич. интерпретации, вершинами.

Примеры простых ППЭ приведены на рис. 1-3 как ф-ции двух координат. Они изображены в виде системы энергетич. контуров, т. е. линий, вдоль к-рых потенциальная энергия хим. системы принимает постоянные значения. В трехатомной системе А, В и С разные ППЭ описывают разрыв связи между атомами А и В (рис. 1) и р-цию обмена (рис. 2). Предполагается, что в ходе р-ций все три атома расположены на одной прямой линии и изменение системы полностью описывается двумя межатомными расстояниями. Для р-ции изомеризации (рис. 3) координаты не конкретизированы, А и В означают разл. геом. конфигурации многоатомной системы. Минимумы энергии соответствуют устойчивым ядерным конфигурациям (ABC на рис. 1, ВС и AB на рис. 2), а седловые точки - переходным состояниям (обозначены крестиком на рис. 2 и 3, на рис. 1 ППЭ не имеет седловой точки).

Рис. 1 и 2 иллюстрируют понятие долины на ППЭ. Когда реагируют или образуются в результате р-ции две устойчивые частицы, то на ППЭ имеются области с асимптотич. направлениями, вдоль к-рых частицы сближаются или разлетаются. В отличие от истинных минимумов, асимптотич. область (дно долины) характеризуется одним нулевым собств. значением матрицы F. Соответствующий собств. вектор определяет асимптотич. направление долины. Более сложно определить долину в неасимптотич. области ППЭ, где происходит перестройка хим. связей. Такие участки имеются на ППЭ любых р-ций. Их характерным признаком является то, что (z Ч1) независимых энергетич. сечений ППЭ проходят через минимум в точке дна долины. Совокупность таких точек представляет собой кривую в пространстве координат i и наз. кривой пути р-ции (см. Координата реакции). На рис. 1-3 координата р-ции показана пунктирной линией. В асимтотич. областях эта кривая становится прямой, т. е. описывает единств. элементарное движение i .> Аналогично определяются энерге-тич. хребты, разделяющие долины. Гребни хребтов-кривые в пространстве координат i вдоль к-рых (z Ч1) независимых энергетич. сечений проходят через экстремум, причем по крайней мере один из этих экстремумов-максимум.

3556-19.jpg

Различия ППЭ для трех указанных типов хим. процессов проявляются в их сечениях вдоль координаты р-ции (рис. 4). Для р-ции распада сечение представляет собой кривую с одним минимумом (одноямную кривую) и горизонтальной асимптотич. областью продуктов (рис. 4,а); сплошная кривая соответствует ППЭ без седловой точки (для сравнения см. рис. 1), пунктирная кривая с максимумом отвечает ППЭ р-ции распада с седловой точкой. Для обратной р-ции присоединения в последнем случае имеется потенциальный барьер. Для р-ции обмена сечение ППЭ вдоль координаты р-ции представляет собой кривую с барьером и горизонтальными асимптотич. областями реагентов и продуктов (рис. 4,б), для р-ции изомеризации-двухъямную кривую (рис. 4,в).

3556-20.jpg

Рис. 5 дает представление о ППЭ сложной р-ции. В системе C6H10 (число внутр. степеней свободы z =42) рассматривается р-ция:

3556-21.jpg

Приведенный малый фрагмент ППЭ системы C6H10 достаточен для описания процесса (5) и сопутствующего ему конформац. перехода в циклогексене:

3556-22.jpg

Конфигурации II, IIIa, IIIбсоответствуют седловым точкам (переходным состояниям) для согласованного и двух несогласованных механизмов р-ции (5). Конфигурация полуванны IV является переходным состоянием конформац. перехода (6).

Теоретич. исследования хим. р-ций включают три этапа: построение ППЭ, расчет динамики элементарного акта р-ции на этой ППЭ и статистич. усреднение результатов расчета. Итогом вычисления является константа скорости р-ции. Использование активированного комплекса теории позволяет перейти от первого этапа к третьему, минуя динамич. расчет. При этом определение минимумов и сед-ловых точек ППЭ приобретает самостоят. фундам. значение, т. к. нахождение соответствующих геом. конфигураций и их энергий позволяет предсказать. механизм протекания процесса, а после вычисления в этих точках вторых производных [матрицы F (4)] становится доступным расчет константы скорости р-ции. При исследовании динамики (на втором этапе) решаются ур-ния движения с ядерным гамильтонианом (1). В этом случае необходима значительно более подробная информация о ППЭ. Требуется как минимум определить кривую пути р-ции и рельеф ППЭ в ее окрестности.

Прямые вычисления ППЭ стали возможны после разработки эффективных неэмпирич. и полуэмпирич. методов решения электронного ур-ния Шрёдингера (2) для достаточно сложных хим. систем (кон. 60-х гг. 20 в.). Это принципиально важное достижение квантовой химии обусловило последующее бурное развитие теоретич. исследований хим. р-ций. Такие исследования объединяет одна общая особенность: "химически" интересные области ППЭ, прежде всего переходные состояния и нестабильные промежут. соед., определяются с помощью спец. поисковых процедур в кван-товохим. расчете. Напр., схема ППЭ для диенового синтеза (рис. 5) подтверждена серией неэмпирич. и полуэмпирич. вычислений геом. и энергетич. характеристик ее стационарных точек (1970-80).

3556-23.jpg

Надежные квантовохим. расчеты ППЭ для многоатомных систем сложны и дороги. Поэтому пока распространены эмпирич. процедуры построения модельных ППЭ. Они заключаются в выборе эмпирич. ф-ции i )того вида, к-рый подсказан характером исследуемой р-ции. В ф-цию включаются параметры, подбираемые по эксперим. данным (спектроскопич., термохим., кинетич.) либо оцениваемые в рамках предельно упрощенного теоретич. расчета. Так, в модельных расчетах динамики элементарного акта хим. р-ции часто используют метод Лондона-Эйринга-Поляни-Сато (схема ЛЭПС), а при обсуждении реакционной способности в рамках теории активир. комплекса - метод "порядок связи - энергия связи".

Лит.: Базилевский М. В., Рябой В. M., в сб.: Современные проблемы квантовой химии. Методы квантовой химии в теории межмолекулярных взаимодействий и твердых тел, Л., 1987, с. 3-56. M. В. Базилевский.


Химическая энциклопедия. — М.: Советская энциклопедия. . 1988.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "ПОВЕРХНОСТЬ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ" в других словарях:

  • ПОВЕРХНОСТЬ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ — (ППЭ), потенциал U взаимодействия атомных ядер в изолир. молекуле или хим. системе. Устойчивым молекулам соответствует минимум ф ции U по всем координатам, а хим. реакции движение по наинизшему из всех возможных путей через седловуго точку… …   Естествознание. Энциклопедический словарь

  • ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ПОВЕРХНОСТЬ — см. Поверхность потенциальной энергии …   Естествознание. Энциклопедический словарь

  • ПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ — (поверхность потенциальной энергии) молекул зависимость внутренней (потенциальной) энергии молекулы от координат её ядер или др. координат, описывающих колебания атомов в молекуле (нормальных координат, внутр. колебат. координат типа растяжения… …   Физическая энциклопедия

  • ПОВЕРХНОСТЬ — понятие постмодернистской номадологии (см. Номадология), выражающее установку постмодернизма на отказ от идеи глубины как 1) в пространственном отношении: топография постмодернизма фундирована презумпцией плоскости (см. Плоскость); так и 2) в… …   История Философии: Энциклопедия

  • Закон сохранения энергии — Закон сохранения энергии  фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и… …   Википедия

  • Термоэмиссионный преобразователь энергии — (ТЭП)         термоэлектронный преобразователь энергии, термоионный преобразователь энергии, устройство для непосредственного преобразования тепловой энергии в электрическую на основе явления термоэлектронной эмиссии (См. Термоэлектронная… …   Большая советская энциклопедия

  • Теория реакционной способности химических соединений — (ТРСХС)  научная дисциплина, занимающаяся изучением механизма химических реакций и механики элементарного акта химического превращения. ТРСХС  относительно молодая отрасль химической науки, активно развивающаяся в последние десятилетия …   Википедия

  • КООРДИНАТА РЕАКЦИИ — величина, характеризующая изменение многоатомной системы в процессе ее хим. превращ. из реагентов в продукты р ции. Определение К. р. тесно связано с топографией поверхности потенциальной энергии (ППЭ) U(qi), к рая является ф цией Nвнутр.… …   Химическая энциклопедия

  • КИНЕТИКА ХИМИЧЕСКАЯ — область физ. химии, в к рой изучают механизмы и скорости хим. реакций. К. х. включает три осн. задачи: изучение закономерностей протекания хим. реакций во времени и зависимость их скоростей от концентраций реагентов, темп ры и др. факторов;… …   Физическая энциклопедия

  • МЕХАНИЗМ РЕАКЦИИ — Понятие используется в осн. в двух смыслах. Для сложных реакций, состоящих из неск. стадий, М. р. это совокупность стадий, в результате к рых исходные в ва превращаются в продукты. Для простой р ции (элементарной р ции, элементарной стадии), к… …   Химическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»