АКСИОМАТИЧЕСКИЙ МЕТОД


АКСИОМАТИЧЕСКИЙ МЕТОД
АКСИОМАТИЧЕСКИЙ МЕТОД (греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость A.M. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные (»принципы») и требующие доказательства (»доказываемые»). В своем развитии A.M. прошел три этапа. На первом этапе A.M. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат «Начала» Евклида. На втором этапе Д. Гильберт внес формальный критерий применения A.M. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе A.M. становится формализованным. Соответственно, изменилось и понятие «аксиома». Если на первом этапе развития A.M. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в A.M. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. К, Геде-лем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А. М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как «полуаксиоматический») и методом математической гипотезы. Гипотетико-де-дуктивный метод, в отличие от A.M., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений A.M.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики «во всех мирах»; снять требование равноправности аксиом. С другой стороны, A.M., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

Новейший философский словарь. — Минск: Книжный Дом. . 1999.

Смотреть что такое "АКСИОМАТИЧЕСКИЙ МЕТОД" в других словарях:

  • АКСИОМАТИЧЕСКИЙ МЕТОД —         способ построения науч. теории, при котором в её основу кладутся некоторые исходные положения (суждения) аксиомы, или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логич. путём, посредством… …   Философская энциклопедия

  • АКСИОМАТИЧЕСКИЙ МЕТОД — см. МЕТОД АКСИОМАТИЧЕСКИЙ. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • АКСИОМАТИЧЕСКИЙ МЕТОД — АКСИОМАТИЧЕСКИЙ МЕТОД, метод математических рассуждений, основанный на логическом выводе из некоторых утверждений (аксиом). Этот метод является одной из основ математической науки: его использовали еще в древней Греции, а формализацию его… …   Научно-технический энциклопедический словарь

  • АКСИОМАТИЧЕСКИЙ МЕТОД — АКСИОМАТИЧЕСКИЙ МЕТОД, способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории (вспомогательные леммы и ключевые теоремы) получаются как… …   Современная энциклопедия

  • АКСИОМАТИЧЕСКИЙ МЕТОД — способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории …   Большой Энциклопедический словарь

  • аксиоматический метод —         АКСИОМАТИЧЕСКИЙ МЕТОД (от греч. axioma) принятое положение способ построения научной теории, при котором в доказательствах пользуются лишь аксиомами, постулатами и ранее выведенными из них утверждениями. Впервые ярко продемонстрирован… …   Энциклопедия эпистемологии и философии науки

  • Аксиоматический метод — АКСИОМАТИЧЕСКИЙ МЕТОД, способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории (вспомогательные леммы и ключевые теоремы) получаются как… …   Иллюстрированный энциклопедический словарь

  • АКСИОМАТИЧЕСКИЙ МЕТОД — способ организации научного (в особенности, теоретического) знания, сущность которого состоит в выделении среди всего множества истинных высказываний об определенной предметной области такого его подмножества (аксиом), из которого логически… …   Философия науки: Словарь основных терминов

  • аксиоматический метод — способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путём логической дедукции получать утверждения (теоремы) данной теории. * * * АКСИОМАТИЧЕСКИЙ МЕТОД АКСИОМАТИЧЕСКИЙ МЕТОД, способ… …   Энциклопедический словарь

  • аксиоматический метод — aksiominis metodas statusas T sritis fizika atitikmenys: angl. axiomatic method vok. axiomatische Methode, f rus. аксиоматический метод, m pranc. méthode axiomatique, f …   Fizikos terminų žodynas

Книги

Другие книги по запросу «АКСИОМАТИЧЕСКИЙ МЕТОД» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.