ОКИСЛЕНИЕ БИОЛОГИЧЕСКОЕ

ОКИСЛЕНИЕ БИОЛОГИЧЕСКОЕ
ОКИСЛЕНИЕ БИОЛОГИЧЕСКОЕ
совокупность реакций окисления, протекающих во всех живых клетках. Осн. функция — обеспечение организма энергией. О. б. связано с передачей т. н. восстанавливающих эквивалентов (ВЭ) — атомов водорода или электронов — от донора к акцептору. У аэробов — большинства животных, растений и мн. микроорганизмов — конечным акцептором ВЭ служит кислород. Поставщиками ВЭ могут быть как органич., так и неорганич. вещества (см. табл.). Реакции О. б. катализируют ферменты класса оксидоредуктаз. В процессе дыхания углеводы, жиры и белки подвергаются многоступенчатому окислению, к-рое приводит к восстановлению осн. поставщиков ВЭ для дыхат. цепи: флавинов, НАД, НАДФ и липоевой к-ты. Восстановление этих соединений в значит, мере осуществляется в цикле трикарбоновых к-т, к-рым завершаются осн. пути окислит, расщепления углеводов (оно начинается с гликолиза), жиров и аминокислот. Нек-рое кол-во восстановленных коферментов — ФАД и НАД — образуется при окислении жирных к-т, а также при окислит, дезаминировании глутаминовой к-ты (НАД) и в пентозофосфатном цикле (восстановленный НАДФ). Осн. путь использования энергии, освобождающейся при О. б.,— накопление её в молекулах АТФ и др. макроэргич. соединений. О. б., сопровождающееся синтезом АТФ из АДФ и неорганич. фосфата, происходит при гликолизе, окислении а-кетоглутаровой к-ты — субстратное фосфорилирование, а также при переносе ВЭ в цепи окислительных (дыхательных) ферментов — окислительное фосфорилирование. Гликолиз, цикл трикарбоновых к-т и дыхат. цепь характерны для большинства эукариот. В расчёте на 1 молекулу глюкозы гликолиз даёт 2 молекулы АТФ, а совокупность гликолитич. и окислит, превращения молекулы глюкозы до конечных продуктов — СО2 и Н2О — приводит к образованию 36 богатых энергией фосфатных связей АТФ. В жидкой фазе цитоплазмы растворены ферменты гликолиза. Внутр. мембраны митохондрий, тилакоиды хлоропластов, мембраны бактерий содержат фосфорилирующие цепи переноса электронов. В матриксе митохондрий локализовано окисление жирных к-т, ферменты цикла трикарбоновых к-т и глутаматдегидрогеназа. Во внутр. мембране митохондрий находятся ферменты, окисляющие янтарную и (3-оксимасляную к-ты, во внешней — ферменты, участвующие в обмене аминокислот: моноаминоксидаза и кинуренингидроксилаза. В пероксисомах, или микротельцах, вклад к-рых в суммарное поглощение О2 может достигать в печени 20% , находится флавиновая оксидаза, окисляющая аминокислоты, гликолевую к-ту и др. субстраты с образованием перекиси водорода, к-рая затем разлагается каталазой или используется пероксидазами в реакциях О. б. В мембранах эндоплазматич. сети клетки локализованы гидроксилазы и оксигеназы, организованные в короткие нефосфорилирующие цепи переноса электронов. Окислит, реакции не всегда сопровождаются накоплением энергии (эффективность процесса О. б. составляет ок. 50%); в ряде случаев они — необходимое звено в биосинтезе разл. веществ (напр., окисление при образовании жёлчных к-т, стероидных гормонов, на путях превращения аминокислот и др.). При О. б. происходит обезвреживание чужеродных и ядовитых для организма веществ (ароматич. соединений, недоокисленных продуктов дыхания и др.). О. б., не сопряжённое с накоплением энергии, наз. свободным окислением. Его энергетич. эффект — образование тепла. По-видимому, система переноса электронов, осуществляющая окислит, фосфорилирование, способна переключаться на свободное окисление при увеличении потребности организма в тепле (у гомойотермных животных). Древнейшие организмы, как полагают, существовали в первичной бескислородной атмосфере Земли и были анаэробными и гетеротрофными организмами. Обеспечение клеток энергией шло за счёт процессов типа гликолиза. Возможно, существовал механизм окисления, известный у нек-рых совр. микроорганизмов: ВЭ передаются через дыхат. цепь на нитрат (NO3 ) или на сульфат (SO4). Принципиально важным этапом оказалось возникновение у древних одноклеточных организмов фотосинтеза, с к-рым связывают появление кислорода в атмосфере. В результате стало возможным использование О2, обладающего высоким окислит.-восстановит. потенциалом, в качестве конечного акцептора электронов в дыхат. цепи. Реализация этой возможности произошла при появлении спец. фермента — цитохромоксидазы, восстанавливающей О2, и привела к возникновению биохимич. дыхат. аппарата совр. типа. Обеспечение энергией у аэробов основано на таком дыхании. Вместе с тем клетки сохранили ферментный аппарат гликолиза. Образуемая в ходе последнего пировиноградная к-та окисляется далее в цикле трикарбоновых к-т, к-рый, в свою очередь, питает дыхат. цепь электронами. Т. о., эволюция энергетич. обмена шла, по-видимому, по пути использования и надстройки уже имевшихся ранее механизмов энергообеспечения. Наличие в клетках ныне существующих организмов биохимич. систем гликолиза (в цитоплазме), дыхания (в митохондриях), фотосинтеза (в хлоропластах), а также сходство механизмов превращения энергии в этих органоидах и в микроорганизмах рассматривают как свидетельство возможного происхождения хлоропластов и митохондрий от древних микроорганизмов-симбионтов (см. СИМБИОГЕНЕЗ). Суммарное О. б., протекающее в нек-рой популяции организмов,— важный экологич. параметр для оценки роли данной популяции в сообществе (экосистеме). Отношение общего дыхания сообщества (т. е. суммарных окислит, процессов) к его суммарной биомассе рассматривают как отношение затрат энергии на поддержание жизнедеятельности сообщества к энергии, содержащейся в его структуре. При изучении отд. популяций часто определяют т. н. скорость ассимиляции (сумма двух процессов — увеличения биомассы и дыхания), к-рую выражают в ккал/м2-день. Измерение суммарного дыхания в отд. сообществах проведено для мн. типов экосистем. Напр., суммарное дыхание растений обычно составляет от n-100 ккал/м2-год (пастбище) до п-1000 ккал/м2-год (лес). Число звеньев в трофических цепях сообществ обычно не превышает 4—5 вследствие того, что в каждом звене этой цепи 80—90% потенциальной энергии растрачивается в теплоту в ходе О. б. (см. АДЕНОЗИНФОСФОРНЫЕ КИСЛОТЫ, БИОЭНЕРГЕТИКА, БРОЖЕНИЕ, ДЫХАНИЕ, МИТОХОНДРИИ, ФОТОСИНТЕЗ).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "ОКИСЛЕНИЕ БИОЛОГИЧЕСКОЕ" в других словарях:

  • окисление биологическое — совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. – обеспечение организма энергией. Оно связано с передачей так называемых восстанавливающих эквивалентов (ВЭ) – атомов водорода или электронов – от донора к… …   Словарь микробиологии

  • Окисление биологическое —         совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объединяемые в класс… …   Большая советская энциклопедия

  • Окисление - восстановление — Окисление восстановление, окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… …   Большая советская энциклопедия

  • Окисление-восстановление —         окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел (См. Окислительное число) атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… …   Большая советская энциклопедия

  • БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ — совокупность ферментативных окислительно восстановительных реакций, протекающих в живых клетках. В процессе биологического окисления происходит расщепление питательных веществ, и освобождаемая при этом энергия запасается в удобной для… …   Большой Энциклопедический словарь

  • биологическое окисление — – совокупность протекающих в живых клетках ферментативных окислительно восстановительных реакций, в результате которых происходит расщепление веществ пищи, и освобождаемая при этом энергия запасается в удобной для использования клетками форме – в …   Краткий словарь биохимических терминов

  • биологическое окисление — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN bio oxidation …   Справочник технического переводчика

  • Биологическое потребление кислорода — У этого термина существуют и другие значения, см. БПК. Биологическое потребление кислорода (БПК)  количество кислорода, израсходованное на аэробное биохимическое окисление под действием микроорганизмов и разложение нестойких органических… …   Википедия

  • биологическое окисление — совокупность ферментативных окислительно восстановительных реакций, протекающих в живых клетках. В процессе биологического окисления происходит расщепление питательных веществ, и освобождаемая при этом энергия запасается в удобной для… …   Энциклопедический словарь

  • БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ — совокупность ферментативных окислит. восстановит. реакций, протекающих в живых клетках. В процессе Б. о. происходит расщепление питат. в в, и освобождаемая при этом энергия запасается в удобной для использования клетками форме т. н. богатых… …   Естествознание. Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»